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Preliminaries

Let f : R2 → R be a stationary Gaussian field with zero-mean, unit variance and
covariance function κ : R2 → [−1, 1] and spectral measure ρ, i.e. for x , y ∈ R2

κ(x) = E(f (y)f (y + x)) =

∫
R2

e it·xdρ(t)

Basic assumptions:

1. κ ∈ C 4+(R2) (which implies f ∈ C 2+(R2) a.s.)

2. ∇2f (0) is a non-degenerate Gaussian vector

We are interested in the geometry of the level sets

{f = `} := {x ∈ R2 | f (x) = `}

for ` ∈ R.
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Previous results

For Ω ⊂ R2 let NLS(`,Ω) be the number of components of {f = `} in Ω.

Theorem (Nazarov-Sodin 2016)

If f is ergodic then there exists cNS(ρ) ≥ 0 such that

NLS(0,R · Ω)/(Area(Ω)R2)→ cNS(ρ)

a.s. and in L1.

Theorem (Kurlberg-Wigman 2018)

If ρ has compact support then there exists cNS(ρ) ≥ 0 such that

E(NLS(0, [0,R]2)) = cNS(ρ) R2 + O(R)

Moreover cNS(ρ) is continuous in ρ (w.r.t. the w∗-topology).
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Previous results

For Ω ⊂ R2 let NLS(`,Ω) be the number of components of {f = `} in Ω.

Theorem (Nazarov-Sodin 2016)

If f is ergodic then there exists cNS(ρ, `) ≥ 0 such that

NLS(`,R · Ω)/(Area(Ω)R2)→ cNS(ρ, `)

a.s. and in L1.

Theorem (Kurlberg-Wigman 2018)

If ρ has compact support then there exists cNS(ρ, `) ≥ 0 such that
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Previous results

For Ω ⊂ R2 let NES(`,Ω) be the number of components of {f ≥ `} in Ω.

Theorem (Nazarov-Sodin 2016)
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NES(`,R · Ω)/(Area(Ω)R2)→ cES(ρ, `)

a.s. and in L1.

Theorem (Kurlberg-Wigman 2018)

If ρ has compact support then there exists cES(ρ, `) ≥ 0 such that
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Level sets and excursion sets

{f ≥ `}

#{Components of {f = `}} ≈#{Components of {f ≥ `}}
+ #{Components of {f ≤ `}}

Corollary

cNS(ρ, `) = cES(ρ, `) + cES(ρ,−`)
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Critical points

Definition
If f is aperiodic we say that a saddle point x is lower connected if it is in the
closure of only one component of {f < `}. We say that x is upper connected if
it is in the closure of only one component of {f > `}.
(When f is periodic, we use a different definition for lower/upper connected
saddles.)

x1

{f ≥ `1}

x2

{f ≥ `2}

Figure: x1 is a lower connected saddle and x2 is an upper connected saddle.
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Critical points

Proposition

Let f satisfy the basic assumptions. There exists a function ps− : R→ [0,∞)
such that the following holds. Let Ω ⊂ R2 and let Ns− [`,∞) denote the
number of lower connected saddles of f in Ω with level above `. Then

E[Ns− [`,∞)] = Area(Ω)

∫ ∞
`

ps−(x) dx .

Analogous statements hold for local maxima, local minima, upper connected
saddles and saddles with the densities pm+ , pm− , ps+ and ps respectively. These
functions can be chosen to satisfy ps− + ps+ = ps , and such that pm+ , pm− and
ps are continuous.
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Main results

Theorem
Let f be a Gaussian field satisfying the basic assumptions, and let pm+ , pm− ,
ps+ , ps− denote the critical point densities defined above. Then

cNS(ρ, `) =

∫ ∞
`

pm+ (x)− ps−(x) + ps+ (x)− pm−(x) dx (1)

cES(ρ, `) =

∫ ∞
`

pm+ (x)− ps−(x) dx (2)

and hence cNS and cES are absolutely continuous in `. In addition cNS and cES
are jointly continuous in (ρ, `) provided ρ has a fixed compact support.
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Proof: Intuition
Local extrema

{f ≥ `1 − ε}

x1 x1

{f ≥ `1}

{f ≥ `2 − ε}

x2

{f ≥ `2} {f ≥ `2 + ε}

x2

Figure: On raising the level through the local maximum x1, the number of level set
components decreases by one. On passing through the local minimum x2, the number
of level set components increases by one.
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Proof: Intuition
Lower connected saddle points

{f ≥ `3 − ε}

x3
x3

{f ≥ `3}

{f ≥ `3 + ε}

Figure: On raising the level through the lower connected saddle point x3, the number
of level set components increases by one.
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Consequences of main results
Bounds on cNS and cES in the isotropic case

Proposition (Cheng-Schwartzman 2017)

Let f be the random plane wave (RPW) so that κ(t) = J0(|t|) (the 0-th Bessel
function), then

pm+ (x) = pm−(−x) =
1

4
√

2π3/2

(
(x2 − 1)e−

x2

2 + e−
3x2

2

)
1x≥0

ps(x) =
1

4
√

2π3/2
e−

3x2

2 .

Substituting these expressions into the main integral equality and considering
the number of ‘flip points’ (see Kurlberg-Wigman 2018) shows that

Corollary

Let f be the RPW and ` ≥ 0, then

1

4π
` φ(`) ≤ cES(`) ≤ cNS(`) ≤ 1

4π
φ(`)

(√
2 φ(
√

2`) + `
(

2Φ(
√

2`)− 1
))
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Consequences of main results
Bounds on cNS and cES in the isotropic case

(a) cES (ρ, `) for the RPW (b) cNS (ρ, `) for the RPW

Figure: Lower bounds (solid) and upper bounds (dashed) for cES (ρ, `) and cNS (ρ, `)
respectively for the RPW.

The bound on cES(ρ, `) for ` < 0 is a result of the equality
cNS(ρ, `) = cES(ρ, `) + cES(ρ,−`) and the fact that cES(ρ, `) is non-decreasing
for ` < 0 (this part is specific to the RPW).
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Consequences of main results
Bounds on cNS and cES in the isotropic case

Similar results hold for all isotropic fields satisfying the basic assumptions.
(The general expression for upper and lower bounds becomes more
complicated, but depends only on the derivatives of κ at 0.)

(a) cES (ρ, `) for the Bargmann-Fock
field.

(b) cNS (ρ, `) for the Bargmann-Fock
field.

Figure: Lower bounds (solid) and upper bounds (dashed) for cES (ρ, `) and cNS (ρ, `)
respectively, where ρ is the spectral measure of the Bargmann-Fock field.
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Consequences of main results
Derivation of cNS and cES for 4/5 point spectral measures

Proposition

Let f be the Gaussian field with spectral measure
ρ = αδ0 + β

2
(δK + δ−K ) + γ

2
(δL + δ−L) where β, γ > 0, α = 1− β − γ ≥ 0 and

K , L ∈ R2 are linearly independent. Then

cNS(`) = |K × L| · P (|Y1 − Y2| ≤ `+ X0 ≤ Y1 + Y2) ,

cES(`) = |K × L| · P (|Y1 − Y2| ≤ |`+ X0| ≤ Y1 + Y2) ,

× denotes the cross product, X0 ∼ N (0, α), Y1 ∼ Ray(
√
β), Y2 ∼ Ray(

√
γ)

and X0,Y1,Y2 are independent.
If cNS(`) 6= 0 then NLS,R(`)/(πR2) converges in L1 to a non-constant random
variable and hence does not converge a.s. to a constant, and this statement
also holds for cES and NES,R(`)/(πR2). Furthermore

pm+ (x) = pm−(−x) = |K × L| · pX0+Y1+Y2 (x)

ps−(x) = ps+ (−x) = |K × L| · pX0+|Y1−Y2|(x)

where pZ denotes the probability density of a random variable Z .
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Consequences of main results
Derivation of cNS and cES for 4 point spectral measures

(a) cES (`) (b) cNS (`)

Figure: The functions cES (`) (left) and cNS (`) (right) with α = 0 for β − γ = 0
(solid), β − γ = 0.5 (dashed) and β − γ = 0.9 (dotted) respectively.
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Consequences of main results
Derivation of cNS and cES for 5 point spectral measures

(a) cES (`) (b) cNS (`)

Figure: The functions cES (`) (left) and cNS (`) (right) with β = γ for α = 0.1 (solid),
α = 0.3 (dashed) and α = 0.6 (dotted) respectively.
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Extensions/open questions

1. Characterising ps− (or ps+ )

2. Higher dimensions

3. Continuous differentiability of cNS

4. Bimodality
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