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Percolation models
The standard example

Figure: Bond percolation on the square lattice
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Percolation models
Key results

Theorem
For Bernoulli percolation on Z2 with parameter p, if p ≤ 1/2 then a.s. there is
no infinite open connected component (Harris 1960). If p > 1/2 then a.s.
there exists a unique infinite open connected component (Kesten 1980).

Let C[a,b]×[c,d ] be the event that there exists an open path in [a, b]× [c, d ]
joining the left and right sides of the rectangle.

Theorem
If p = 1/2 then for each c > 0 there exists c1 > 0 such that

c1 < P(C[0,R]×[0,cR]) < 1− c1 (RSW)

for all R > 0. If p > 1/2 then for each c > 0 there exists c2 > 0 such that

P(C[0,R]×[0,cR]) > 1− e−c2R (Kesten 1980)
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Gaussian fields
Basic setting

Let f : R2 → R be a stationary Gaussian field with zero-mean, unit variance and
covariance function κ : R2 → [−1, 1] and spectral measure ρ, i.e. for x , y ∈ R2

κ(x) = E(f (y)f (y + x)) =

∫
R2

e it·xdρ(t)

We are interested in the geometry of the level sets

L` := {x ∈ R2 | f (x) = `}

and (upper) excursion sets

E` := {x ∈ R2 | f (x) ≥ `}

for ` ∈ R.
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Gaussian fields
Analogy with percolation models
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Figure: A Gaussian excursion set E` and a realisation of a corresponding percolation
model with parameter p.
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Gaussian fields
Two important examples

1. Random Plane wave
I κ(x) = J0(|x |) the zero-th Bessel function
I Slow decay of correlations ≈ |x |−1/2

I Negative correlations
I Realisations of f are eigenfunctions of the Laplacian with eigenvalue 1

2. Bargmann-Fock field
I κ(x) = exp(−|x |2/2)
I Super-exponential decay of correlations
I κ > 0 everywhere

(a) x 7→ J0(x) (b) x 7→ exp(−x2/2)
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Gaussian fields
Two important examples

(a) Nodal set of RPW (b) Nodal set of Bargmann-Fock field
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Gaussian fields
Two important examples

Figure: Critical points of RPW

Update
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Gaussian fields
Percolation results

I (Molchanov-Stepanov 1983) If κ is absolutely integrable then E` has an
infinite component for ` << 0.

I (Alexander 1996) If κ ≥ 0 and κ(x)→ 0 as |x | → ∞ then L` has no
infinite component for any `.

I (Beffara-Gayet 2016) The Bargmann-Fock field satisfied RSW estimates
for E0 and L0. The same conclusion holds if κ ≥ 0 and |κ(x)| . |x |−β for
β > 325. (Hence E` contains no infinite component for ` ≥ 0).

I (Beliaev-Muirhead 2018) As above for β > 16

I (Rivera-Vanneuville 2018) As above for β > 4.
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Gaussian fields
Percolation results

Let CE` ([a, b]× [c, d ]) be the event that there exists a left-right crossing of
[a, b]× [c, d ] in E` and CL` ([a, b]× [c, d ]) the corresponding event for L`.
I (Rivera-Vanneuville 2018) For the Bargmann-Fock field, for each c > 0,
` < 0 there exists c1 > 0 such that for R >> 0

P
(
CE` ([0,R]× [0, cR])

)
> 1− e−c1R

Hence for ` < 0, E` almost surely has a unique unbounded component.

I (Muirhead-Vanneuville 2018) Suppose κ ≥ 0, κ(x) . |x |2+ε for some ε > 0
and ρ has a ‘nice’ density function. Then for each c > 0, ` < 0 there
exists c1 > 0 such that for R >> 0

P
(
CE` ([0,R]× [0, cR])

)
> 1− e−c1 log2(R)

Hence for ` < 0, E` almost surely has a unique unbounded component.
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Number of excursion sets
Motivation

Conjecture (Bogomolny-Schmit 2001)

The nodal domains of the Random Plane Wave (i.e. components of {f 6= 0})
can be modelled by critical Bernoulli percolation on the square lattice.
More formally, for R > 0 sufficiently large

N(R) ≈ N
(
µR2, σ2R2

)
where N(R) is the number of components of {f 6= 0} in [0,R]2 and µ, σ2 are
explicitly known constants.

I Numerical results indicate that the prediction for µ is inaccurate (by about
5%).

I However the probability of crossing events for the RPW match those for
percolation extremely well numerically.
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Number of excursion sets
First moment results

For Ω ⊂ R2 let NLS(`,Ω) be the number of components of {f = `} in Ω.

Theorem (Nazarov-Sodin 2016)

If f is ergodic then there exists cNS(ρ) ≥ 0 such that

NLS(0,R · Ω)/(Area(Ω)R2)→ cNS(ρ)

a.s. and in L1.

Theorem (Kurlberg-Wigman 2018)

If ρ has compact support then there exists cNS(ρ) ≥ 0 such that

E(NLS(0, [0,R]2)) = cNS(ρ) R2 + O(R)

Moreover cNS(ρ) is continuous in ρ (w.r.t. the w∗-topology).
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Level sets and excursion sets

{f ≥ `}

#{Components of {f = `}} ≈#{Components of {f ≥ `}}
+ #{Components of {f ≤ `}}

Corollary

cNS(ρ, `) = cES(ρ, `) + cES(ρ,−`)
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Critical points

Definition
If f is aperiodic we say that a saddle point x is lower connected if it is in the
closure of only one component of {f < `}. We say that x is upper connected if
it is in the closure of only one component of {f > `}.
(When f is periodic, we use a different definition for lower/upper connected
saddles.)

x1

{f ≥ `1}

x2

{f ≥ `2}

Figure: x1 is a lower connected saddle and x2 is an upper connected saddle.
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Critical points

Proposition

Let f satisfy the basic assumptions. There exists a function ps− : R→ [0,∞)
such that the following holds. Let Ω ⊂ R2 and let Ns− [`,∞) denote the
number of lower connected saddles of f in Ω with level above `. Then

E[Ns− [`,∞)] = Area(Ω)

∫ ∞
`

ps−(x) dx .

Analogous statements hold for local maxima, local minima, upper connected
saddles and saddles with the densities pm+ , pm− , ps+ and ps respectively. These
functions can be chosen to satisfy ps− + ps+ = ps , and such that pm+ , pm− and
ps are continuous.
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Main results

Theorem
Let f be a Gaussian field satisfying the basic assumptions, and let pm+ , pm− ,
ps+ , ps− denote the critical point densities defined above. Then

cNS(ρ, `) =

∫ ∞
`

pm+ (x)− ps−(x) + ps+ (x)− pm−(x) dx (1)

cES(ρ, `) =

∫ ∞
`

pm+ (x)− ps−(x) dx (2)

and hence cNS and cES are absolutely continuous in `. In addition cNS and cES
are jointly continuous in (ρ, `) provided ρ has a fixed compact support.
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Proof: Intuition
Local extrema

{f ≥ `1 − ε}

x1 x1

{f ≥ `1}

{f ≥ `2 − ε}

x2

{f ≥ `2} {f ≥ `2 + ε}

x2

Figure: On raising the level through the local maximum x1, the number of level set
components decreases by one. On passing through the local minimum x2, the number
of level set components increases by one.
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Proof: Intuition
Lower connected saddle points

{f ≥ `3 − ε}

x3
x3

{f ≥ `3}

{f ≥ `3 + ε}

Figure: On raising the level through the lower connected saddle point x3, the number
of level set components increases by one.
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Consequences of main results
Bounds on cNS and cES in the isotropic case

Proposition (Cheng-Schwartzman 2017)

Let f be the random plane wave (RPW) so that κ(t) = J0(|t|) (the 0-th Bessel
function), then

pm+ (x) = pm−(−x) =
1

4
√

2π3/2

(
(x2 − 1)e−

x2

2 + e−
3x2

2

)
1x≥0

ps(x) =
1

4
√

2π3/2
e−

3x2

2 .

Substituting these expressions into the main integral equality and considering
the number of ‘flip points’ (see Kurlberg-Wigman 2018) shows that

Corollary

Let f be the RPW and ` ≥ 0, then

1

4π
` φ(`) ≤ cES(`) ≤ cNS(`) ≤ 1

4π
φ(`)

(√
2 φ(
√

2`) + `
(

2Φ(
√

2`)− 1
))
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Consequences of main results
Bounds on cNS and cES in the isotropic case

(a) cES (ρ, `) for the RPW (b) cNS (ρ, `) for the RPW

Figure: Lower bounds (solid) and upper bounds (dashed) for cES (ρ, `) and cNS (ρ, `)
respectively for the RPW.
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Consequences of main results
Bounds on cNS and cES in the isotropic case

(a) cES (ρ, `) for the Bargmann-Fock
field.

(b) cNS (ρ, `) for the Bargmann-Fock
field.

Figure: Lower bounds (solid) and upper bounds (dashed) for cES (ρ, `) and cNS (ρ, `)
respectively, where ρ is the spectral measure of the Bargmann-Fock field.

Similar bounds hold for all isotropic fields.
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Open questions

1. Can we identify cNS(`) or cES(`) for some non-degenerate field and some
`? (especially for ` = 0)

I Characterising ps− (or equivalently ps+ ) may help

2. When is cNS differentiable?

I We can construct (simple) examples where cNS is differentiable on R or
differentiable on R\{0}

I Partial answer in next section
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Variance of the number of excursion sets
Previous results

I Based on the Bogomolny-Schmit conjecture, we might expect

Var(NLS(R, `)) ' R2

I Trivial result
1 . Var(NLS(R, `)) . R4

I (Nazarov-Sodin 2009) For random spherical harmonics (‘RPW on the
sphere’)

Var(NLS(fn, 0)) . n4−2/15

I (Nazarov-Sodin, announced) For random spherical harmonics

nσ . Var(NLS(fn, 0))

for some σ > 0
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Variance of the number of excursion sets
A preliminary result

Theorem
Suppose κ ≥ 0, κ(x) . |x |−(2+ε) for some ε > 0 and ρ has a ‘nice’ density
function, then ps− , ps+ can be chosen continuous and so cES and cNS are
continuously differentiable.

I These assumptions are used in Muirhead-Vanneuville to prove RSW
estimates. These bound the probability of a ‘one-arm event’, which is used
to prove this result. Therefore this theorem could also be proven under
other (weaker) conditions which control the probability of ‘one-arm
events’.
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Variance of the number of excursion sets
Lower bound

Theorem
Let f be a Gaussian field on R2 such that κ ≥ 0, κ(x) . |x |−(2+ε) for some
ε > 0 and ρ has a ‘nice’ density function. If c ′NS(`) 6= 0 then there exists
c0(`) > 0 such that

Var(NLS(R, `)) ≥ c0(`)R2

for all R > 0 sufficiently large. The same holds for excursion sets.

Remarks

I c ′NS(0) = 0 by symmetry, so this result does not apply to nodal sets

I For isotropic fields, c ′ES > 0 on a neighbourhood of zero and
c ′ES(`), c ′NS(`) < 0 for ` large (depending on κ). For example, for the
Bargmann-Fock field this holds for ` > 1.

22 Oct 2018 47



Variance of the number of excursion sets
Lower bound

Proof outline.
Fix a sequence Rn →∞ and define Xn := NES(Rn, `) and
Yn := NES(Rn, `+ 1/Rn).

1. Show that the total variation distance dTV (Xn,Yn) is small

2. Use differentiability of cES to show |E(Xn − Yn)| & Rn

3. Use an upper bound on critical points to show E((Xn − Yn)2) . R2
n

4. By the second moment method, |Xn − Yn| & Rn with probability bounded
away from zero

5. A lemma by Chatterjee states that when 1 and 4 hold, Xn has variance of
order R2

n .
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Extension/open questions

1. Extending differentiability of cES , cNS

2. Applying lower bound to other levels

3. Upper bound on the variance

4. (Eventually) a central limit theorem
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