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Percolation models
The standard example

Figure: Bernoulli percolation on the square lattice
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Percolation models
Key results

Theorem
For Bernoulli percolation on Z2 with parameter p, if p ≤ 1/2 then a.s. there is
no infinite open connected component (Harris 1960). If p > 1/2 then a.s.
there exists a unique infinite open connected component (Kesten 1980).

Let C[a,b]×[c,d ] be the event that there exists an open path in [a, b]× [c, d ]
joining the left and right sides of the rectangle.

Theorem
If p = 1/2 then for each c > 0 there exists c1 > 0 such that

c1 < P(C[0,R]×[0,cR]) < 1− c1 (RSW)

for all R > 0. If p > 1/2 then for each c > 0 there exists c2 > 0 such that

P(C[0,R]×[0,cR]) > 1− e−c2R (Kesten 1980)
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Gaussian fields
Basic setting

Let f : R2 → R be a stationary Gaussian field with zero-mean, unit variance and
covariance function κ : R2 → [−1, 1] and spectral measure ρ, i.e. for x , y ∈ R2

κ(x) = E(f (y)f (y + x)) =

∫
R2

e it·xdρ(t)

We are interested in the geometry of the level sets

L` := {x ∈ R2 | f (x) = `}

and (upper) excursion sets

E` := {x ∈ R2 | f (x) ≥ `}

for ` ∈ R.
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Gaussian fields
Two important examples

1. Random Plane wave
I κ(x) = J0(|x |) the zero-th Bessel function
I Slow decay of correlations ≈ |x |−1/2

I Negative correlations
I Realisations of f are eigenfunctions of the Laplacian with eigenvalue -1

2. Bargmann-Fock field
I κ(x) = exp(−|x |2/2)
I Super-exponential decay of correlations
I κ > 0 everywhere

(a) x 7→ J0(x) (b) x 7→ exp(−x2/2)
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Gaussian fields
Two important examples

(a) Nodal set of Random Plane Wave (b) Nodal set of Bargmann-Fock field

Figure: f is positive on black regions and negative on white regions.
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Gaussian fields
Analogy with percolation models
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Figure: A Gaussian excursion set E` and a realisation of a corresponding percolation
model with parameter p.

30 Apr 2019 6



Gaussian fields
Percolation results

I (Molchanov-Stepanov 1983) If κ is absolutely integrable then E` has an
infinite component for ` << 0.

I (Alexander 1996) If κ ≥ 0 and κ(x)→ 0 as |x | → ∞ then L` has no
infinite component for any `.

I (Beffara-Gayet 2016) The Bargmann-Fock field satisfies RSW estimates
for E0 and L0. The same conclusion holds if κ ≥ 0 and |κ(x)| . |x |−β for
β > 325. (Hence E` contains no infinite component for ` ≥ 0).

I (Beliaev-Muirhead 2018) As above for β > 16

I (Rivera-Vanneuville 2018) As above for β > 4.
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Gaussian fields
Percolation results

Let CE` ([a, b]× [c, d ]) be the event that there exists a left-right crossing of
[a, b]× [c, d ] in E` and CL` ([a, b]× [c, d ]) the corresponding event for L`.
I (Rivera-Vanneuville 2018) For the Bargmann-Fock field, for each c > 0,
` < 0 there exists c1 > 0 such that for R >> 0

P
(
CE` ([0,R]× [0, cR])

)
> 1− e−c1R

Hence for ` < 0, E` almost surely has a unique unbounded component.

I (Muirhead-Vanneuville 2018) As above for κ ≥ 0, κ(x) . |x |−(2+ε) for
some ε > 0 and ρ that has a density satisfying some technical assumptions.

30 Apr 2019 8



Gaussian fields
Percolation results

Let CE` ([a, b]× [c, d ]) be the event that there exists a left-right crossing of
[a, b]× [c, d ] in E` and CL` ([a, b]× [c, d ]) the corresponding event for L`.
I (Rivera-Vanneuville 2018) For the Bargmann-Fock field, for each c > 0,
` < 0 there exists c1 > 0 such that for R >> 0

P
(
CE` ([0,R]× [0, cR])

)
> 1− e−c1R

Hence for ` < 0, E` almost surely has a unique unbounded component.

I (Muirhead-Vanneuville 2018) As above for κ ≥ 0, κ(x) . |x |−(2+ε) for
some ε > 0 and ρ that has a density satisfying some technical assumptions.

30 Apr 2019 8



Outline

1. Percolation-type results for Gaussian fields

2. Number of excursion sets of Gaussian fields

30 Apr 2019



Number of excursion sets

(a) Nodal set of Random Plane Wave (b) Nodal set of Bargmann-Fock field

Figure: f is positive on black regions and negative on white regions.
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Number of excursion sets
Motivation

Conjecture (Bogomolny-Schmit 2001)

The nodal domains of the Random Plane Wave (i.e. components of {f 6= 0})
can be modelled by critical Bernoulli percolation on the square lattice.
More formally, for R > 0 sufficiently large

N(R) ≈ N
(
µR2, σ2R2

)
where N(R) is the number of components of {f 6= 0} in [0,R]2 and µ, σ2 are
explicitly known constants.

I Numerical results indicate that the prediction for µ is inaccurate (by about
5%).

I However the probability of crossing events for the Random Plane Wave
match those for percolation extremely well numerically.
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Number of excursion sets
First moment results

Let NLS(R, `) be the number of components of {f = `} in the ball of radius R
centred at 0.

Theorem (Nazarov-Sodin 2016)

If f is ergodic then there exists cLS(ρ) ≥ 0 such that

NLS(0,R)/(πR2)→ cLS(ρ)

a.s. and in L1.
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1. The proof relies on an ergodic argument (similar to that for percolation).
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Gaussian fields.

30 Apr 2019 11



Number of excursion sets
First moment results

Let NLS(R, `) be the number of components of {f = `} in the ball of radius R
centred at 0.

Theorem (Nazarov-Sodin 2016)

If f is ergodic then there exists cLS(ρ) ≥ 0 such that

NLS(0,R)/(πR2)→ cLS(ρ)

a.s. and in L1.

1. The proof relies on an ergodic argument (similar to that for percolation).

2. This result inspired much of the literature on percolation properties of
Gaussian fields.

30 Apr 2019 11



Number of excursion sets
First moment results

Let NLS(R, `) be the number of components of {f = `} in the ball of radius R
centred at 0.

Theorem (Nazarov-Sodin 2016)

If f is ergodic then there exists cLS(ρ, `) ≥ 0 such that

NLS(`,R)/(πR2)→ cLS(ρ, `)

a.s. and in L1.

1. The proof relies on an ergodic argument (similar to that for percolation).

2. This result inspired much of the literature on percolation properties of
Gaussian fields.

30 Apr 2019 11



Number of excursion sets
First moment results

Let NES(R, `) be the number of components of {f ≥ `} in the ball of radius R
centred at 0.
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Variance of the number of excursion sets
Previous results

I Based on the percolation analogy (and the Bogomolny-Schmit
conjecture), we might expect

Var(NLS(R, `)) ' R2

I Trivial result
1 . Var(NLS(R, `)) . R4

I (Nazarov-Sodin 2009) For random spherical harmonics (‘Random Plane
Wave on the sphere’)

Var(NLS(fn, 0)) . n4−2/15

I (Nazarov-Sodin, announced) For random spherical harmonics

nσ . Var(NLS(fn, 0))

for some σ > 0.
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Variance of the number of excursion sets
Lower bound

Theorem
Let f be the Bargmann-Fock field, if ` ∈ (−ε, 0.64) ∪ (1.02,∞) then

Var(NES(R, `)) & R2.

If |`| > 1.37 then
Var(NLS(R, `)) & R2.

I The same bounds hold for ` such that c ′ES(`) 6= 0 or c ′LS(`) 6= 0.

I Similar bounds hold for other fields with non-negative covariance functions
and fast correlation decay.
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Variance of the number of excursion sets
Lower bound

Theorem
Let f be the Random Plane Wave, if ` ∈ (−∞, 0) ∪ (0, 0.87) ∪ [1,∞) then

Var(NES(R, `)) & R3.

If |`| > 1 then
Var(NLS(R, `)) & R3.

I As with BF, the same bounds hold for ` 6= 0 such that c ′ES(`) 6= 0 or
c ′LS(`) 6= 0.

I This is surprising given the Bogomolny-Schmit conjecture, however our
method doesn’t apply to ` = 0, so there may be cancellation at this level.
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Variance of the number of excursion sets
Lower bound: proof

Lemma (Chatterjee 2017)

Let Xn and Yn be sequences of random variables and an ∈ R. If Xn − Yn has
fluctuations of order at least an and dTV (Xn − Yn)→ 0 then Xn has
fluctuations of order at least an.

Define XR := NES(R, `) and YR := NES(R, `+ 1/
√
R).

Step 1
If c ′ES(`) 6= 0 then

E(XR − YR)| & R3/2.

It can also be shown that

E((XR − YR)2) . R3.

By the second moment method XR − YR has fluctuations of order at least R3/2

(and variance of order at least R3).
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Variance of the number of excursion sets
Lower bound: proof

Step 2
The Random Plane Wave has an orthogonal expansion

f (x) =
∑
m∈Z

amJ|m|(r)e imθ

where (r , θ) represents x in polar coordinates, the am are independent standard
complex Gaussian random variables and Jm is the m-th Bessel function.
By truncating this expansion and rescaling the am we get a bound on
dTV (XR ,YR), in terms of the total variation distance of two Gaussian random
vectors, which tends to zero.
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Conclusion
Thank you for listening!

30 Apr 2019 17


	Percolation-type results for Gaussian fields
	Number of excursion sets of Gaussian fields

