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Gaussian fields
Basic setting

Let f : R2 → R be a C 2, stationary Gaussian field with mean zero, variance one,
covariance function κ : R2 → [−1, 1] and spectral measure ν, i.e. for x , y ∈ R2

κ(x) = E(f (y)f (y + x)) =

∫
R2

e it·xdν(t).

We are interested in the geometry of the level sets

L` :=
{
x ∈ R2 | f (x) = `

}
and (upper) excursion sets

E` :=
{
x ∈ R2 | f (x) ≥ `

}
for ` ∈ R.
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Gaussian fields
Two important examples

1. Random Plane wave
I κ(x) = J0(|x |) the zero-th Bessel function
I ν is normalised Lebesgue measure on the unit circle
I Realisations of f are eigenfunctions of the Laplacian with eigenvalue -1

2. Bargmann-Fock field
I κ(x) = exp(−|x |2/2)
I ν(t) = exp(−|t|2/2) dt
I scaling limit of random homogeneous polynomials on RP2

(a) u 7→ J0(u) (b) u 7→ exp(−u2/2)
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Gaussian fields
Two important examples

(a) Nodal set (i.e. zero level set) of
Random Plane Wave

(b) Nodal set of Bargmann-Fock field

Figure: f is positive on black regions and negative on white regions.
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Number of excursion/level sets
The Bogomolny Schmit conjecture
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Figure: Approximating nodal lines of the Random Plane Wave by a square grid.
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Figure: Adjusting the corners of the grid.
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Figure: Adjusting the corners of the grid.
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Number of excursion/level sets
The Bogomolny Schmit conjecture

Conjecture (Bogomolny-Schmit 2001)

The nodal set of the Random Plane Wave (i.e. the set {f = 0}) can be
modelled by critical Bernoulli percolation on the square lattice.
In particular, for R > 0 sufficiently large

N(R) ≈ N
(
µR2, σ2R2

)
where N(R) is the number of components of {f = 0} in [0,R]2 and µ, σ2 are
explicitly known constants.

I They later extend the conjecture to non-zero levels without deriving the
analogous mean and variance.

I Numerical results indicate that the prediction for µ is inaccurate (by about
5%).

I However the probability of ‘crossing events’ for the Random Plane Wave
match those for percolation extremely well numerically.
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Number of excursion/level sets
First moment results

Let NLS(`,R) be the number of components of {f = `} in [0,R]2.

Theorem (Nazarov-Sodin 2016)

If f is ergodic then there exists cLS(`) ≥ 0 such that

NLS(`,R)/R2 → cLS(`)

a.s. and in L1 as R →∞.
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1. The proof relies on an ergodic argument (a similar argument works for
percolation).

2. Further properties of the functional cLS have been studied (smoothness,
lower/upper bounds, monotonicity).
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Variance of the number of excursion sets
Previous results

I Based on percolation models, we might expect

Var(NES(`,R)) ' R2

I Trivial result
1 . Var(NES(`,R)) . R4

I (Nazarov-Sodin 2009) For random spherical harmonics (‘Random Plane
Wave on the sphere’)

Var(NLS(0, fn)) . n4−2/15

I (Nazarov-Sodin, announced) For random spherical harmonics

nσ . Var(NLS(0, fn))

for some σ > 0.
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Variance of the number of excursion sets
Lower bound: general fields

Theorem
Let f be a Gaussian field such that:

1. |∂ακ(x)| → 0 as |x | → ∞ for |α| ≤ 2

2. ν has a density ρ w.r.t. Lebesgue measure which is ‘nice’

3. 0 < g(r) := infB(r) ρ for some r > 0

4. c ′ES(`) 6= 0

then
Var(NES(`,R)) & R2g(1/R).

I The same conclusion holds for level sets or the Euler characteristic of
excursion sets (after changing condition 4).

I Conditions 1.-3. are easy to verify, condition 4. is more challenging but has
been proven for some levels (using Morse theory and critical points).
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Variance of the number of excursion sets
Lower bound: Bargmann-Fock

Corollary

Let f be the Bargmann-Fock field.

1. If ` ∈ (−ε, 0.64) ∪ (1.02,∞) then

Var(NES(`,R)) & R2.

2. If |`| > 1.37 then
Var(NLS(`,R)) & R2.

I For fields which are invariant (in distribution) under rotations, we can show
that c ′ES(`) 6= 0 when ` ∈ (−ε, ε) or ` > C and c ′LS(`) 6= 0 when |`| > C .
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Variance of the number of excursion sets
Lower bound: Random Plane Wave

Theorem
Let f be the Random Plane Wave.

1. If ` ∈ (−∞, 0) ∪ (0, 0.87) ∪ [1,∞) then

Var(NES(`,R)) & R3.

2. If |`| > 1 then
Var(NLS(`,R)) & R3.

I This is surprising given the Bogomolny-Schmit conjecture, however our
method doesn’t apply to ` = 0, so the conjecture may still hold at this
level.

I The same bounds hold for ` 6= 0 such that c ′ES(`) 6= 0 or c ′LS(`) 6= 0.
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Variance of the number of excursion sets
Lower bound: proof

Definition (Fluctuations)

Let (Xn) be a sequence of random variables and (an) a sequence of positive
numbers. We say that (Xn) has fluctuations of order at least (an) if there exists
c1, c2 > 0 such that for all n large enough and all u < v

v − u ≤ c1an ⇒ P (u ≤ Xn ≤ v) ≤ 1− c2

If (Xn) has fluctuations of order (an) then Var(Xn) & a2
n.

Lemma (Chatterjee 2017)

Let (Xn) and (Yn) be sequences of random variables and (an) a sequence of
positive numbers. If Xn − Yn has fluctuations of order at least an and
dTV (Xn,Yn)→ 0 then Xn has fluctuations of order at least an.

I We wish to apply this lemma to

XR := NES(`,R) and YR := NES(`+ εR ,R) as R →∞.
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Variance of the number of excursion sets
Lower bound: proof

Step 1
Define XR := NES(`,R) and YR := NES(`+ εR ,R).

I By extending Nazarov and Sodin’s result

E(YR − XR) = (cES(`+ εR)− cES(`))R2 + o(R2εR)

= c ′ES(`)R2εR + o(R2εR).

So if c ′ES(`) 6= 0 then |E(YR − XR)| & R2εR .

I By a Kac-Rice estimate (Muirhead 2019)

E((YR − XR)2) ≤ E(#{Critical points in [0,R]2 at level [`, `+ εR ]}2)

≤ c0(R4ε2
R + R2εR).

I By the second moment method (Paley-Zygmund inequality) YR − XR has
fluctuations of order R2εR .

11 Jun 2019 12



Variance of the number of excursion sets
Lower bound: proof

Step 1
Define XR := NES(`,R) and YR := NES(`+ εR ,R).

I By extending Nazarov and Sodin’s result

E(YR − XR) = (cES(`+ εR)− cES(`))R2 + o(R2εR)

= c ′ES(`)R2εR + o(R2εR).

So if c ′ES(`) 6= 0 then |E(YR − XR)| & R2εR .

I By a Kac-Rice estimate (Muirhead 2019)

E((YR − XR)2) ≤ E(#{Critical points in [0,R]2 at level [`, `+ εR ]}2)

≤ c0(R4ε2
R + R2εR).

I By the second moment method (Paley-Zygmund inequality) YR − XR has
fluctuations of order R2εR .

11 Jun 2019 12



Variance of the number of excursion sets
Lower bound: proof

Step 1
Define XR := NES(`,R) and YR := NES(`+ εR ,R).

I By extending Nazarov and Sodin’s result

E(YR − XR) = (cES(`+ εR)− cES(`))R2 + o(R2εR)

= c ′ES(`)R2εR + o(R2εR).

So if c ′ES(`) 6= 0 then |E(YR − XR)| & R2εR .

I By a Kac-Rice estimate (Muirhead 2019)

E((YR − XR)2) ≤ E(#{Critical points in [0,R]2 at level [`, `+ εR ]}2)

≤ c0(R4ε2
R + R2εR).

I By the second moment method (Paley-Zygmund inequality) YR − XR has
fluctuations of order R2εR .

11 Jun 2019 12



Variance of the number of excursion sets
Lower bound: proof

Step 1
Define XR := NES(`,R) and YR := NES(`+ εR ,R).

I By extending Nazarov and Sodin’s result

E(YR − XR) = (cES(`+ εR)− cES(`))R2 + o(R2εR)

= c ′ES(`)R2εR + o(R2εR).

So if c ′ES(`) 6= 0 then |E(YR − XR)| & R2εR .

I By a Kac-Rice estimate (Muirhead 2019)

E((YR − XR)2) ≤ E(#{Critical points in [0,R]2 at level [`, `+ εR ]}2)

≤ c0(R4ε2
R + R2εR).

I By the second moment method (Paley-Zygmund inequality) YR − XR has
fluctuations of order R2εR .

11 Jun 2019 12



Variance of the number of excursion sets
Lower bound: proof

Step 2 (Random Plane Wave)

I The Random Plane Wave has an orthogonal expansion

f (x) =
∑
m∈Z

amJ|m|(r)e imθ

where (r , θ) represents x in polar coordinates, the am are standard complex
Gaussian random variables independent except that am = a−m and Jm is
the m-th Bessel function.

I Using deterministic bounds on Bessel functions and arguments from Morse
theory we show that

P (NES(f , `,R) 6= NES(fN , `,R)) ≤ c0e
−c1R

where N ≈ 2R and fN(x) =
∑
|m|≤N amJ|m|(r)e imθ. This allows us to work

with f or fN interchangeably (for our purposes).
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Variance of the number of excursion sets
Lower bound: proof

Step 2 (Random Plane Wave)

I Observe that for ` 6= 0

{fN = `+ εR} =

{
`

`+ εR
fN = `

}
and so

dTV (NES(fN , `,R),NES(fN , `+ εR ,R))

= dTV

(
NES(fN , `,R),NES

(
`

`+ εR
fN , `,R

))
≤ dTV

(
fN ,

`

`+ εR
fN

)
≤ dTV

(
(am)Nm=−N ,

`

`+ εR
(am)Nm=−N

)

I Using Pinsker’s inequality this is bounded by the Kullback-Liebler
divergence between these Gaussian vectors which is explicitly known.

I We then set εR = 1/
√
R so that this distance converges to zero. By

Chatterjee’s lemma, NES(f , `,R) has fluctuations of order R2εR = R3/2.
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Variance of the number of excursion sets
Lower bound: proof

Step 2 (General fields)

I We choose hR to be a good approximation of 1 on [0,R]2

hR :=
1

4r 2
F [1[−r,r ]2 ] for r → 0 as R →∞

I Using a Morse theory argument, we show that

NES(f , `+ εR ,R) = NES(f − εR , `,R) = NES(f − εRhR , `,R) + oP(R2εR)

I Therefore from Step 1

NES(f − εRhR , `,R)− NES(f , `,R)

has fluctuations of order R2εR .
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Variance of the number of excursion sets
Lower bound: proof

Step 2 (General fields)

I By definition of total variation distance

dTV (NES(f , `,R),NES(f − εRhR , `,R)) ≤ dTV (f , f − εRhR)

I A Cameron-Martin argument (Muirhead-Vanneuville 2019) shows that
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where H is the reproducing kernel Hilbert space generated by κ.

I Our assumptions on ν allow us to bound ‖εRhR‖H. (This bound is smaller
when ν is close to a δ mass at the origin).

I For the correct choice of εR (which depends on ν) this norm tends to 0 so
we can apply Chatterjee’s lemma to show that NES(f , `,R) has
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Conclusion
Open question/Next steps

1. Extending lower bounds to all (or almost all) levels and more general
spectral measures

2. Considering different variables for Chatterjee’s lemma

3. Finding matching upper bounds for variance

Thank you for listening!
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