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Overview

I The geometry of excursion sets of Gaussian fields is important for
cosmology, quantum chaos and medical imaging.

I Recently, many classical results from percolation theory (sharp phase
transition, noise sensitivity etc) have been proven for excursion sets of
general planar Gaussian fields .

I A particular variable of interest is the number of connected
components of an excursion set in a large domain. We have derived
lower bounds on the variance of this quantity.

Excursion sets of Gaussian fields

A random function f : R2→ R is said to be a (planar) Gaussian field if its
distribution at any finite set of points is jointly normal. We assume that f
is stationary, that f ∈ C2(R2) almost surely and that f (x) has mean zero
and variance one for each x ∈ R2. We are interested in the geometry of
the (upper) excursion sets {

x ∈ R2 | f (x) ≥ `
}

for ` ∈ R. In particular, we study the number of connected components of
these sets contained in a large subset of R2.

(a) The Random Plane Wave (b) The Bargmann-Fock field
Figure: The zero excursion set for realisations of two different Gaussian fields: f is
positive on black regions and negative on white regions. (Credit: Dmitry Beliaev)

Motivation

Geometric quantities can be used as test statistics for random fields in
many different areas and have advantages over more naive approaches
such as performing multiple tests on the values of the field.
I Cosmological theories predict that the Cosmic Microwave Background

Radiation observed on earth can be well modelled as a realisation of a
Gaussian field on the two-dimensional sphere and any deviations from
this prediction have potentially important physical implications. This
theory can be tested by analysing the number of excursion set
components of the field at different levels [7].

I The output of brain imaging scans (PET, FMRI, EEG) can be analysed
in a similar way to determine whether stimuli cause spikes in brain
activity in certain regions [8]. In this case the test statistic is usually the
maximum of the Gaussian field.

I For more details and further applications (in quantum chaos and
oceanography), see [1, Chapter 5].

The percolation phase transition

Percolation models are used to understand long range connection proper-
ties of random media. Bond percolation on the square lattice is the most
classical such model and is defined as follows: form a graph with vertices
Z2 and edges between nearest neighbours, declare each edge to be ‘open’
independently with probability p ∈ [0, 1] (and closed otherwise), the open
sub-graph is a realisation of the model.

(a) The square lattice (b) A realisation of bond percolation

The most classical result from percolation is a phase transition for long
range connections: for p ≤ 1/2, the model almost surely has only bounded
components whereas for p > 1/2 it almost surely has a unique unbounded
component. Recently, many percolation-type results have been proven for
excursion sets of Gaussian fields, including the phase transition.

The percolation phase transition (cont.)

Theorem 1 ([5] and references therein).
Let f be a Gaussian field satisfying certain regularity assumptions. For
` ≥ 0 the set

{
x ∈ R2 | f (x) ≥ `

}
almost surely has no unbounded com-

ponent. For ` < 0, the set
{
x ∈ R2 | f (x) ≥ `

}
almost surely has a unique

unbounded component.

(a) ` = −0.1 (b) ` = 0 (c) ` = 0.1

Figure: The excursion set {x ∈ R2 | f (x) ≥ `} for a Gaussian field f at different levels `
are in grey. The largest connected component of each set is in black. (Credit: Dmitry
Beliaev)

Intuitively this theorem says that at levels below zero, excursion sets have
connections on infinite scales, whereas at levels above zero, connections
only occur on finite scales. These differences are illustrated in the above
figure.

The number of excursion sets

A particular percolation-type variable of interest is the number of connected
components of a Gaussian field excursion set in a large domain. The
expectation of this quantity is characterised by the following important
result.

Theorem 2. (Nazarov-Sodin [6],[2])
Let f be an ergodic Gaussian field and let N(R, `) be the number of com-
ponents of {x ∈ R2 | f (x) ≥ `} contained in [−R,R]2, then there exists
cES(`) ≥ 0 such that as R→∞,

N(R, `)

4R2
→ cES(`) almost surely and in L1.

In particular, the expected number of excursion set components in a domain
of area R2 is of order R2. The next step in understanding this quantity is
to analyse the variance. In work in progress, we show that for generic
fields and levels, this variance is of order at least R2. This is expected to be
optimal for most fields, based on analogous results from percolation theory.
We also consider a particular Gaussian field known as the Random Plane
Wave, which has applications in quantum mechanics [4], and show that in
this case the variance is of order at least R3, suggesting that the order of
this variance is non-universal (i.e. it depends on the field).

Theorem 3. Let f be a Gaussian field satisfying some technical assump-
tions. If c′ES(`) 6= 0, then there exists c > 0 such that for large R

Var(N(R, `)) ≥ cR2.

Let f be the Random Plane Wave, if ` 6= 0 and c′ES(`) 6= 0 then there exists
c > 0 such that for large R

Var(N(R, `)) ≥ cR3.

For more details see [2, 3]
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