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Gaussian fields
Basic setting

Let f : R2 → R be a stationary Gaussian field with mean zero, variance one,
covariance function κ : R2 → [−1, 1] and spectral measure ν, i.e. for x , y ∈ R2

κ(x) = E(f (y)f (y + x)) =

∫
R2

e it·xdν(t).

We assume that κ ∈ C 6+ε which implies that f ∈ C 3(R2) almost surely.

We are interested in the number of connected components of the (upper)
excursion set {

x ∈ R2 | f (x) ≥ `
}

and level sets {
x ∈ R2 | f (x) = `

}
in a large domain, for ` ∈ R.
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Gaussian fields
Two important examples

1. Random Plane wave
I κ(x) = J0(|x |) the zero-th Bessel function
I ν is normalised Lebesgue measure on the unit circle
I Realisations of f are eigenfunctions of the Laplacian with eigenvalue -1

2. Bargmann-Fock field
I κ(x) = exp(−|x |2/2)
I ν(t) = exp(−|t|2/2) dt
I scaling limit of random homogeneous polynomials on RP2

(a) u 7→ J0(u) (b) u 7→ exp(−u2/2)
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Gaussian fields
Two important examples

(a) Nodal set (i.e. zero level set) of
Random Plane Wave

(b) Nodal set of Bargmann-Fock field

Figure: f is positive on black regions and negative on white regions.
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Number of excursion/level sets
First moment results

Let NES (`,R) be the number of components of {f ≥ `} in [0,R]2 and
NLS (`,R) the corresponding number for {f = `}.

Theorem (Nazarov-Sodin 2016, Kurlberg-Wigman 2017)

There exists cES (`) ≥ 0 such that

E(NES (`,R)) = cES (`)R2 + O(R) as R →∞.

If f is ergodic then
NES (`,R)/R2 → cES (`)

a.s. and in L1 as R →∞.
The same result holds if NES and cES are replaced by NLS and cLS respectively.

1. The proof relies on an ergodic argument and the fact that the number of
components is ‘semi-local’.

2. Further properties of the functional cLS have been studied (differentiability,
lower/upper bounds, monotonicity).
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Variance of the number of excursion sets
Previous results

I Trivial result
Var(NES (`,R)) ≤ CR4

I (Nazarov-Sodin 2009) For random spherical harmonics (‘Random Plane
Wave on the sphere’)

Var(NLS (0, fn)) ≤ Cn4−2/15

I (Nazarov-Sodin, announced) For random spherical harmonics

cnσ ≤ Var(NLS (0, fn))

for some σ > 0.
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Variance of the number of excursion sets
Lower bound: fields with spectral density around 0

Theorem 1
Fix ` ∈ R and let f be a Gaussian field such that:

1. |∂ακ(x)| ≤ c|x |−(1+ε) for |α| ≤ 3 and some c, ε > 0

2. ν has a density ρ on a neighbourhood of 0 which is bounded away from 0

3. There exists c1, c2 > 0 s.t. P(f ∈ Arm0(r ,R)) ≤ c1(r/R)c2

4. c ′ES (`) 6= 0

then for some c > 0
Var(NES (`,R)) ≥ cR2.

I The same conclusion holds for level sets (replacing NES and cES with NLS

and cLS ).

I Sufficient conditions for Assumption 3 are given in (Muirhead-Vanneuville
18) and (Rivera 19).

I Sufficient conditions for Assumption 4 (at some levels) are given in
(Beliaev-M.-Muirhead 19)
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Variance of the number of excursion sets
Lower bound: Bargmann-Fock

Corollary

Let f be the Bargmann-Fock field.

1. If ` ∈ (−ε, 0.64) ∪ (1.02,∞) then

Var(NES (`,R)) ≥ cR2.

2. If ` ∈ (−∞,−1.37) ∪ (1.37,∞) then

Var(NLS (`,R)) ≥ cR2.

I For fields which are isotropic, we can show that c ′ES (`) 6= 0 when
` ∈ (−ε, ε) or ` > C and c ′LS (`) 6= 0 when |`| > C .
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Variance of the number of excursion sets
Lower bound: fields with spectral blow-up at 0

Theorem 2
Fix ` ∈ R and let f be a Gaussian field such that:

1. |∂ακ(x)| → 0 as |x | → ∞ for |α| ≤ 2

2. ν has a density ρ on a neighbourhood of 0 which is bounded away from 0

3. g(r) := infx∈B(2r) ρ(x)→∞ as r → 0

4. c ′ES (`) 6= 0

then for some c > 0

Var(NES (`,R)) ≥ cR2g(1/R).

I The bound R2g(1/R) interpolates between R2 and o(R4) since ρ is
integrable.

I The same conclusion holds for level sets (replacing NES and cES with NLS

and cLS ).
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Variance of the number of excursion sets
Lower bound: Random Plane Wave

Let D+ denote the right lower Dini-derivative:

D+h(x) = lim inf
ε↓0

(h(x + ε)− h(x))/ε.

Theorem 3
Let f be the Random Plane Wave and ` 6= 0, if D+cES (`) > 0 then there exists
c > 0 such that

Var(NES (`,R)) ≥ cR3.

The same result holds if NES and cES are replaced by NLS and cLS .
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Variance of the number of excursion sets
Lower bound: Random Plane Wave

Corollary

Let f be the Random Plane Wave.

1. If ` ∈ (−∞, 0) ∪ (0, 0.87) ∪ [1,∞) then there exists c > 0 such that

Var(NES (`,R)) ≥ cR3.

2. If ` ∈ (−∞,−1] ∪ [1,∞) then there exists c > 0 such that

Var(NLS (`,R)) ≥ cR3.
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Variance of the number of excursion sets
Lower bound: proof

Definition (Fluctuations)

Let (Xn) be a sequence of random variables and (an) a sequence of positive
numbers. We say that (Xn) has fluctuations of order at least (an) if there exists
c1, c2 > 0 such that for all n large enough and all u < v

v − u ≤ c1an ⇒ P (u ≤ Xn ≤ v) ≤ 1− c2

If (Xn) has fluctuations of order (an) then Var(Xn) ≥ ca2
n.

Lemma (Chatterjee 2017)

Let (Xn) and (Yn) be sequences of random variables and (an) a sequence of
positive numbers. If Xn − Yn has fluctuations of order at least an and
dTV (Xn,Yn)→ 0 then Xn has fluctuations of order at least an.

I We wish to apply this lemma to

XR := NES (`,R) and YR := NES (`+ εR ,R) as R →∞.
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Variance of the number of excursion sets
Lower bound: proof

Step 1
Define XR := NES (`,R) and YR := NES (`+ εR ,R).

I By extending Nazarov and Sodin’s result

E(YR − XR ) = (cES (`+ εR )− cES (`))R2 + o(R2εR )

= c ′ES (`)R2εR + o(R2εR ).

So if c ′ES (`) 6= 0 then |E(YR − XR )| & R2εR .

I By a Kac-Rice estimate (Muirhead 2019)

E((YR − XR )2) ≤ E(#{Critical points in [0,R]2 at level [`, `+ εR ]}2)

≤ c0(R4ε2
R + R2εR ).

I By the second moment method (Paley-Zygmund inequality) YR − XR has
fluctuations of order R2εR .
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Variance of the number of excursion sets
Lower bound: proof

Step 2 (General fields)

I We choose hR to be a good approximation of 1 on [0,R]2

hR :=
1

4r 2
F [1[−r,r ]2 ] for r → 0 as R →∞

I Using a Morse theory argument, we show that

NES (f , `+ εR ,R) = NES (f − εR , `,R) = NES (f − εRhR , `,R) + oP(R2εR )

I Therefore from Step 1

NES (f − εRhR , `,R)− NES (f , `,R)

has fluctuations of order R2εR .
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Variance of the number of excursion sets
Lower bound: proof

Step 2 (General fields)

I By definition of total variation distance

dTV (NES (f , `,R),NES (f − εRhR , `,R)) ≤ dTV (f , f − εRhR )

I A Cameron-Martin argument (Muirhead-Vanneuville 2019) shows that

dTV (f , f − εRhR ) ≤ c0‖εRhR‖H.

where H is the reproducing kernel Hilbert space generated by κ.

I Our assumptions on ν allow us to bound ‖εRhR‖H. (This bound is smaller
when ν is close to a δ mass at the origin).

I For the correct choice of εR (which depends on ν) this norm tends to 0 so
we can apply Chatterjee’s lemma to show that NES (f , `,R) has
fluctuations of order R2εR .
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Variance of the number of excursion sets
Lower bound: proof

Step 2 (Random Plane Wave)

I The Random Plane Wave has an orthogonal expansion

f (x) =
∑
m∈Z

amJ|m|(r)e imθ

where (r , θ) represents x in polar coordinates, the am are standard complex
Gaussian random variables independent except that am = a−m and Jm is
the m-th Bessel function.

I Using deterministic bounds on Bessel functions and arguments from Morse
theory we show that

E (NES (f , `,R) 6= NES (fN , `,R)) ≤ C

where N ≈ 2R and fN (x) =
∑
|m|≤N amJ|m|(r)e imθ. This allows us to work

with f or fN interchangeably (for our purposes).
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Variance of the number of excursion sets
Lower bound: proof

Step 2 (Random Plane Wave)

I Observe that for ` 6= 0

{fN ≥ `+ εR} =

{
`

`+ εR
fN ≥ `

}
and so

dTV (NES (fN , `,R),NES (fN , `+ εR ,R))

= dTV

(
NES (fN , `,R),NES

(
`

`+ εR
fN , `,R

))
≤ dTV

(
fN ,

`

`+ εR
fN

)
≤ dTV

(
(am)N

m=−N ,
`

`+ εR
(am)N

m=−N

)

I Using Pinsker’s inequality this is bounded by the Kullback-Liebler
divergence between these Gaussian vectors which is explicitly known.

I We then set εR = 1/
√
R so that this distance converges to zero. By

Chatterjee’s lemma, NES (f , `,R) has fluctuations of order R2εR = R3/2.
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Variance of the number of excursion sets
Comments on results

1. Our proof relies on comparing the number of excursion/level sets at
different levels. This is heuristically similar to results for local functionals
which are ‘driven by L2-norm fluctuations’.

2. We expect these lower bounds to be of the correct order for general levels
(based on the percolation analogy and local geometric functionals of
RPW).

3. Our proof necessarily fails at critical levels of cES and cLS (including for
nodal sets). How many such levels are there? Does the conclusion also fail
at these levels? If so, what is the order of variance at these levels?
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Variance of the number of excursion sets
Conjectures

Conjecture

Let f satisfy the conditions of Theorem 1 with ρ bounded above near 0. For
` ∈ R there exists cfluc (`) > 0 such that

Var(NES (R, `)) ∼ cfluc (`)R2,

and the same conclusion is true for NLS (R, `).

Conjecture

Let f be the Random Plane Wave, there exists a (possibly finite) set L ⊂ R
such that the following holds. For ` ∈ R\L there exists cfluc (`) > 0 such that

Var(NES (R, `)) ∼ cfluc (`)R3.

For ` ∈ L
Var(NES (R, `)) = o(R3) as R →∞.

The same conclusion is true for NLS (R, `) (with a different set L).
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Conclusion
Extensions of results

1. Proving c ′ES (`) 6= 0 or c ′LS (`) 6= 0 for a wider range of levels,

2. Extending the proof beyond the case of positive spectral density around 0,

3. Considering different variables for Chatterjee’s lemma,

4. Finding matching upper bounds on the variance.

Thank you for listening!
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