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Gaussian fields
Basic setting

Let f : R2 → R be a C 3, stationary Gaussian field with mean zero, variance one,
covariance function κ : R2 → [−1, 1] and spectral measure ν, i.e. for x , y ∈ R2

κ(x) = E(f (y)f (y + x)) =

∫
R2

e it·xdν(t).

We are interested in the excursion sets{
x ∈ R2 | f (x) ≥ `

}
and level sets {

x ∈ R2 | f (x) = `
}

in a large domain, for ` ∈ R.
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Gaussian fields
Motivation

1) Cosmology

Figure: Fluctuations of the Cosmic Microwave Background Radiation (CMBR)
(Source: Planck 2018).

Theory predicts that the CMBR can be modelled as a Gaussian field on the
sphere. This prediction can be tested statistically using geometric properties of
excursion sets.
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Gaussian fields
Motivation

2) Quantum Chaos

Conjecture (Berry 1977)

Let Ω be a Riemannian 2-manifold with ‘chaotic’ dynamics. Let φλ be an
eigenfunction of the Laplacian with eigenvalue λ, then as λ→∞, φλ is well
modelled by ‘Gaussian monochromatic random waves’.

The local scaling limit of ‘Gaussian monochromatic random waves’ on a
manifold is a Gaussian field on R2 known as the Random Plane Wave.

3) Hilbert’s 16-th problem
One can study the components of ‘typical’ real algebraic hypersurfaces by
placing a canonical Gaussian measure on homogeneous polynomials in
projective space. As the degree of the polynomials increase, the scaling limit of
these measures is known as the Bargmann-Fock field.
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Gaussian fields
Two important examples

1. Random Plane wave
I κ(x) = J0(|x |) the 0-th Bessel function
I ν is normalised Lebesgue measure on the unit circle
I Realisations of f are eigenfunctions of the Laplacian with eigenvalue -1

2. Bargmann-Fock field
I κ(x) = exp(−|x |2/2)
I ν(t) = exp(−|t|2/2) dt
I scaling limit of random homogeneous polynomials on RP2

(a) u 7→ J0(u) (b) u 7→ exp(−u2/2)
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Gaussian fields
Two important examples

(a) Nodal set (i.e. zero level set) of Random
Plane Wave

(b) Nodal set of Bargmann-Fock field

Figure: f is positive on black regions and negative on white regions.
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Percolation models
The standard example

Figure: Bond percolation on the square lattice
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Percolation theory
The standard model

Figure: Bond percolation on the square lattice
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Percolation theory
Phase transition

Theorem
For Bernoulli percolation on Z2 with parameter p, if p ≤ 1/2 then a.s. there is
no infinite open connected component (Harris 1960). If p > 1/2 then a.s.
there exists a unique infinite open connected component (Kesten 1980).

Let C[a,b]×[c,d ] be the event that there exists an open path in [a, b]× [c, d ]
joining the left and right sides of the rectangle.

Theorem
If p = 1/2 then for each c > 0 there exists c1 > 0 such that

c1 < P(C[0,R]×[0,cR]) < 1− c1 (RSW)

for all R > 0. If p > 1/2 then for each c > 0 there exists c2 > 0 such that

P(C[0,R]×[0,cR]) > 1− e−c2R (Kesten 1980)
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Heuristic connection between Gaussian fields and percolation
The Bogomolny-Schmit conjecture
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Figure: Approximating nodal lines of the Random Plane Wave by a square grid.
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Heuristic connection between Gaussian fields and percolation
The Bogomolny-Schmit conjecture
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Figure: Adjusting the corners of the grid.
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Heuristic connection between Gaussian fields and percolation
The Bogomolny-Schmit conjecture
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Figure: The corresponding Gaussian excursion set.
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Heuristic connection between Gaussian fields and percolation
The Bogomolny-Schmit conjecture

Conjecture (Bogomolny-Schmit 2001)

The nodal set of the Random Plane Wave (i.e. the set {f = 0}) can be
modelled by critical Bernoulli percolation on the square lattice.
In particular, for R > 0 sufficiently large

N(R) ≈ N
(
µR2, σ2R2

)
where N(R) is the number of components of {f = 0} in [0,R]2 and µ, σ2 are
explicitly known constants.
They later extend the conjecture to non-zero levels without deriving the
analogous mean and variance.

I Numerical results indicate that the prediction for µ is inaccurate (by about
5%).

I However the probability of ‘crossing events’ for the Random Plane Wave
match those for percolation extremely well numerically.
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Gaussian fields
Percolation results

I (Molchanov-Stepanov 1983) If κ and its derivatives decay sufficiently
quickly at infinity, then {f ≥ `} has an infinite component almost surely
for ` << 0.

I (Alexander 1996) If κ ≥ 0 and κ(x)→ 0 as |x | → ∞ then {f = `} has no
infinite component for any `.

I (Beffara-Gayet 2016) The Bargmann-Fock field satisfies RSW estimates
for {f ≥ 0} and {f = 0}. The same conclusion holds if κ ≥ 0 and
|κ(x)| . |x |−β for β > 325. (Hence {f ≥ `} contains no infinite
component for ` ≥ 0).

I (Beliaev-Muirhead 2018) As above for β > 16

I (Rivera-Vanneuville 2018) As above for β > 4.
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Gaussian fields
Percolation results

Let C`(R, α) be the event that there
exists a left-right crossing in {f ≥ `}
of [0,R]× [0, αR].

(0, 0)

(R, cR)

{f ≥ `}

I (Rivera-Vanneuville 2018) For the Bargmann-Fock field, for each α > 0,
` < 0 there exists c > 0 such that

P (C`(R, α)) > 1− e−cR

Hence for ` < 0, {f ≥ `} almost surely has a unique unbounded
component.

I (Muirhead-Vanneuville 2018) As above for κ ≥ 0, κ(x) . |x |−(2+ε) when
the spectral measure ν has a density satisfying certain technical conditions.

I (Rivera 2019) Removes the technical conditions above.

19 Feb 2020 12



Gaussian fields
Percolation results

Let C`(R, α) be the event that there
exists a left-right crossing in {f ≥ `}
of [0,R]× [0, αR].

(0, 0)

(R, cR)

{f ≥ `}

I (Rivera-Vanneuville 2018) For the Bargmann-Fock field, for each α > 0,
` < 0 there exists c > 0 such that

P (C`(R, α)) > 1− e−cR

Hence for ` < 0, {f ≥ `} almost surely has a unique unbounded
component.

I (Muirhead-Vanneuville 2018) As above for κ ≥ 0, κ(x) . |x |−(2+ε) when
the spectral measure ν has a density satisfying certain technical conditions.

I (Rivera 2019) Removes the technical conditions above.

19 Feb 2020 12



Gaussian fields
Percolation results

Let C`(R, α) be the event that there
exists a left-right crossing in {f ≥ `}
of [0,R]× [0, αR].

(0, 0)

(R, cR)

{f ≥ `}

I (Rivera-Vanneuville 2018) For the Bargmann-Fock field, for each α > 0,
` < 0 there exists c > 0 such that

P (C`(R, α)) > 1− e−cR

Hence for ` < 0, {f ≥ `} almost surely has a unique unbounded
component.

I (Muirhead-Vanneuville 2018) As above for κ ≥ 0, κ(x) . |x |−(2+ε) when
the spectral measure ν has a density satisfying certain technical conditions.

I (Rivera 2019) Removes the technical conditions above.

19 Feb 2020 12



Gaussian fields
Takeaways from literature

I There has been impressive progress on this topic recently!

I These results depend heavily on percolation methods, so positive
correlations and fast decay of correlations are essential. Hence these
results fail for some interesting fields including the Random Plane Wave!
(Although they are believed to be true.)

I It would be nice to have more of an explanation for similarities between
Guassian fields and discrete percolation models.

I Convergence of level lines to Schramm-Loewner Evolution could provide
such an explanation (this has been tested numerically, and seems plausible)
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Number of excursion/level sets
Comparison with percolation

As before, let f : R2 → R be a C 3-smooth, stationary Gaussian field.
Let NES (`,R) be the number of components of {f ≥ `} in [0,R]2 and
NLS (`,R) the corresponding number for {f = `}.

What are the statistics of NES and NLS as R →∞?

We can compare this with percolation:

Theorem (Cox-Grimmett 1984, Zhang 2000)

Let Kn be the number of open components of Bernoulli bond percolation on Zd

in [0, n]d . For 0 < p < 1 there exists κ(p), σ(p) > 0 such that

Kn − κ(p)nd

σ(p)nd/2

d−→ N (0, 1)

In particular E(Kn) ∼ nd and Var(Kn) ∼ nd .
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Number of excursion/level sets
First moment results

Let NES (`,R) be the number of components of {f ≥ `} in [0,R]2 and
NLS (`,R) the corresponding number for {f = `}.

Theorem (Nazarov-Sodin 2016, Kurlberg-Wigman 2017)

There exists cES (`) ≥ 0 such that

E(NES (`,R)) = cES (`)R2 + O(R) as R →∞.

If f is ergodic then
NES (`,R)/R2 → cES (`)

a.s. and in L1 as R →∞.
The same result holds if NES and cES are replaced by NLS and cLS respectively.

1. The proof relies on an ergodic argument and the fact that the number of
components is ‘semi-local’.

2. Further properties of the functional cES have been studied (differentiability,
lower/upper bounds, monotonicity).

19 Feb 2020 15



Number of excursion/level sets
First moment results

Let NES (`,R) be the number of components of {f ≥ `} in [0,R]2 and
NLS (`,R) the corresponding number for {f = `}.

Theorem (Nazarov-Sodin 2016, Kurlberg-Wigman 2017)

There exists cES (`) ≥ 0 such that

E(NES (`,R)) = cES (`)R2 + O(R) as R →∞.

If f is ergodic then
NES (`,R)/R2 → cES (`)

a.s. and in L1 as R →∞.
The same result holds if NES and cES are replaced by NLS and cLS respectively.

1. The proof relies on an ergodic argument and the fact that the number of
components is ‘semi-local’.

2. Further properties of the functional cES have been studied (differentiability,
lower/upper bounds, monotonicity).

19 Feb 2020 15



Number of excursion/level sets
First moment results

Let NES (`,R) be the number of components of {f ≥ `} in [0,R]2 and
NLS (`,R) the corresponding number for {f = `}.

Theorem (Nazarov-Sodin 2016, Kurlberg-Wigman 2017)

There exists cES (`) ≥ 0 such that

E(NES (`,R)) = cES (`)R2 + O(R) as R →∞.

If f is ergodic then
NES (`,R)/R2 → cES (`)

a.s. and in L1 as R →∞.
The same result holds if NES and cES are replaced by NLS and cLS respectively.

1. The proof relies on an ergodic argument and the fact that the number of
components is ‘semi-local’.

2. Further properties of the functional cES have been studied (differentiability,
lower/upper bounds, monotonicity).

19 Feb 2020 15



Number of excursion/level sets
Variance results

I Based on the percolation analogy, we might expect

Var(NES (`,R)) ∼ R2

I Trivial result
Var(NES (`,R)) ≤ CR4

I (Nazarov-Sodin 2009) For random spherical harmonics (‘Random Plane
Wave on the sphere’)

Var(NLS (0, fn)) ≤ Cn4−2/15

I (Nazarov-Sodin, announced) For random spherical harmonics (and other
spherical fields)

Var(NLS (0, fn)) ≥ cnσ

for some σ > 0. (More importantly, they partially justify the
Bogomolny-Schmit heuristics)
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Variance of the number of excursion sets
Lower bound: fields with spectral density around 0

Theorem 1
Fix ` ∈ R and let f be a (stationary, C 3+ε) Gaussian field such that:

1. |∂ακ(x)| ≤ c|x |−(1+ε) for |α| ≤ 3 and some c, ε > 0

2. ν has a density on a neighbourhood of 0 which is bounded away from 0

3. There exists c1, c2 > 0 s.t. P(f ∈ Arm0(r ,R)) ≤ c1(r/R)c2

4. c ′ES (`) 6= 0

then for some c > 0
Var(NES (`,R)) ≥ cR2.

I The same conclusion holds for level sets (replacing NES and cES with NLS

and cLS ).

I Sufficient conditions for Assumption 3 are given in (Muirhead-Vanneuville
18) and (Rivera 19).

I Sufficient conditions for Assumption 4 (at some levels) are given in
(Beliaev-M.-Muirhead 19)
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Variance of the number of excursion sets
Lower bound: Bargmann-Fock

Corollary

Let f be the Bargmann-Fock field.

1. If ` ∈ (−ε, 0.64) ∪ (1.02,∞) then

Var(NES (`,R)) ≥ cR2.

2. If |`| > 1.37 then
Var(NLS (`,R)) ≥ cR2.

I For fields which are isotropic, we can show that c ′ES (`) 6= 0 when
` ∈ (−ε, ε) or ` > C and c ′LS (`) 6= 0 when |`| > C .
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Variance of the number of excursion sets
Lower bound: fields with spectral blow-up at 0

Theorem 2
Fix ` ∈ R and let f be a Gaussian field such that:

1. |∂ακ(x)| → 0 as |x | → ∞ for |α| ≤ 2

2. ν has a density ρ on a neighbourhood of 0 which is bounded away from 0

3. g(r) := infx∈B(2r) ρ(x)→∞ as r → 0

4. c ′ES (`) 6= 0

then for some c > 0

Var(NES (`,R)) ≥ cR2g(1/R).

I The bound R2g(1/R) interpolates between R2 and o(R4) since ρ is
integrable.

I The same conclusion holds for level sets (replacing NES and cES with NLS

and cLS ).
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Variance of the number of excursion sets
Lower bound: Random Plane Wave

Let D+ denote the right lower Dini-derivative:

D+h(x) = lim inf
ε↓0

(h(x + ε)− h(x))/ε.

Theorem 3
Let f be the Random Plane Wave and ` 6= 0, if D+cES (`) > 0 then there exists
c > 0 such that

Var(NES (`,R)) ≥ cR3.

The same result holds if NES and cES are replaced by NLS and cLS .
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Variance of the number of excursion sets
Lower bound: Random Plane Wave

Corollary

Let f be the Random Plane Wave.

1. If ` ∈ (−∞, 0) ∪ (0, 0.87) ∪ [1,∞) then there exists c > 0 such that

Var(NES (`,R)) ≥ cR3.

2. If ` ∈ (−∞,−1] ∪ [1,∞) then there exists c > 0 such that

Var(NLS (`,R)) ≥ cR3.
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Variance of the number of excursion sets
Lower bounds

Comments

I We think these bounds should be sharp in most cases!

I Theorem 1 reiterates the similarity of Bernoulli percolation and ‘fast
decay’ fields

I Theorem 2 contradicts some parts of the Bogomolny-Schmit conjecture
(but not the most important case: the zero level)

Questions

I How general is the condition c ′ES (`) 6= 0? What happens at levels for
which c ′ES (`) = 0?

I Can the conditions of these theorems be generalised?
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Variance of the number of excursion sets
Lower bound: proof

Definition (Fluctuations)

Let (Xn) be a sequence of random variables and (an) a sequence of positive
numbers. We say that (Xn) has fluctuations of order at least (an) if there exists
c1, c2 > 0 such that for all n large enough and all u < v

v − u ≤ c1an ⇒ P (u ≤ Xn ≤ v) ≤ 1− c2

If (Xn) has fluctuations of order (an) then Var(Xn) ≥ ca2
n.

Lemma (Chatterjee 2017)

Let (Xn) and (Yn) be sequences of random variables and (an) a sequence of
positive numbers. If Xn − Yn has fluctuations of order at least an and
dTV (Xn,Yn)→ 0 then Xn has fluctuations of order at least an.

I We wish to apply this lemma to

XR := NES (`,R) and YR := NES (`+ εR ,R) with εR → 0 as R →∞.
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Variance of the number of excursion sets
Lower bound: proof

Step 1
Define XR := NES (`,R) and YR := NES (`+ εR ,R).

I By extending Nazarov and Sodin’s result

E(YR − XR ) = (cES (`+ εR )− cES (`))R2 + o(R2εR )

= c ′ES (`)R2εR + o(R2εR ).

So if c ′ES (`) 6= 0 then |E(YR − XR )| & R2εR .

I By a Kac-Rice estimate (Muirhead 2019)

E((YR − XR )2) ≤ E(#{Critical points in [0,R]2 at level [`, `+ εR ]}2)

≤ c0(R4ε2
R + R2εR ).

I By the second moment method (Paley-Zygmund inequality) YR − XR has
fluctuations of order R2εR .
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Variance of the number of excursion sets
Lower bound: proof

Step 2 (General fields)

I By definition of total variation distance

dTV (NES (f , `,R),NES (f − εR , `,R)) ≤ dTV (f , f − εR )

(where we restrict all functions to [0,R]2).

I Let hR ≈ 1[0,R]2 , then a Cameron-Martin argument (Muirhead-Vanneuville
2019) shows that

dTV (f , f − εRhR ) ≤ c0‖εRhR‖H.

where H is the reproducing kernel Hilbert space generated by κ. Our
assumptions on ν allow us to bound ‖εRhR‖H. For the correct choice of
εR this norm tends to 0.
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Variance of the number of excursion sets
Lower bound: proof

Step 2 (Random Plane Wave)

I The Random Plane Wave has an orthogonal expansion in polar coordinates

For x = (r , θ) ∈ [0,N/2]2 f (x) ≈ fN (x) :=
∑
|m|≤N

amJ|m|(r)e imθ

where the am are complex Gaussian random variables and Jm is the m-th
Bessel function.

I Then for ` 6= 0 and N ≈ R

dTV (NES (fN , `,R),NES (fN , `+ εR ,R))

= dTV

(
NES (fN , `,R),NES

(
`

`+ εR
fN , `,R

))
≤ dTV

(
fN ,

`

`+ εR
fN

)
≤ dTV

(
(am)N

m=−N ,
`

`+ εR
(am)N

m=−N

)
I This can be bounded explicitly using Pinsker’s inequality.
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Conclusion
Comments on variance bounds

1. Our lower bounds are conceptually due to ‘shifts in the level of the field’.
This is heuristically similar to results for some other geometric functionals
(e.g. length of level sets) which are ‘driven by L2-norm fluctuations’.

2. If these ‘level shifts’ are the dominant source of fluctuations, we may
expect lower variance whenever c ′ES (`) = 0.

3. We expect there are only a small number of levels satisfying these
conditions (perhaps 1-3), but have very limited justification for this.
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Conclusion
Conjectures

Conjecture

Let f satisfy the conditions of Theorem 1 with ρ bounded above near 0. For
` ∈ R there exists cfluc (`) > 0 such that

Var(NES (R, `)) ∼ cfluc (`)R2,

and the same conclusion is true for NLS (R, `).

Conjecture

Let f be the Random Plane Wave, there exists a (possibly finite) set L ⊂ R
such that the following holds. For ` ∈ R\L there exists cfluc (`) > 0 such that

Var(NES (R, `)) ∼ cfluc (`)R3.

For ` ∈ L
Var(NES (R, `)) = o(R3) as R →∞.

The same conclusion is true for NLS (R, `) (with a different set L).

19 Feb 2020 28



Conclusion
Extension of results

1. Theorem 3 only depends on the fact that Random Plane Wave is specified
by N parameters in a domain of area N2, so this could be extended to
other fields with a similar property.

2. The methods used to prove these theorems could all be extended to other
geometric quantities.

Thank you for listening!
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