

Mathematical Institute

sab

⊀⊡ ⊧

w.

Excursion sets of Planar Gaussian Fields

Michael McAuley Supervisors Dmitry Beliaev and Stephen Muirhead Mathematical Institute University of Oxford

25 June 2020 DPhil Viva

Oxford Mathematics

Gaussian fields Basic setting

KORKARYKERKER OQO

Let $f:\mathbb{R}^2\to\mathbb{R}$ be a \sf C^{3+} , stationary Gaussian field with mean zero, variance one, covariance function $K:\mathbb{R}^2 \to [-1,1]$ and spectral measure ν , i.e. for $x, y \in \mathbb{R}^2$

$$
K(x) = \mathbb{E}(f(y)f(y+x)) = \int_{\mathbb{R}^2} e^{it\cdot x} d\nu(t).
$$

We are interested in the excursion sets

$$
\left\{x\in\mathbb{R}^2\;\Big|\;f(x)\geq\ell\right\}
$$

and level sets

$$
\left\{x\in\mathbb{R}^2\;\Big|\;f(x)=\ell\right\}
$$

restricted to a large domain, for $\ell \in \mathbb{R}$.

Gaussian fields **Motivation**

1) Applications

- \triangleright Statistical testing in cosmology
- \triangleright Nodal sets of Laplace eigenfunctions in Quantum Chaos
- \triangleright Statistical version of Hilbert's 16-th problem (on 'typical' real algebraic hypersurfaces)

2) Connection to percolation theory

- \triangleright Gaussian fields are predicted to behave analogously to discrete percolation models (Bogomolny-Schmit conjecture)
- \blacktriangleright Percolation results for fields have recently been proven (including the phase transition)
- \triangleright We would like to prove/understand this 'universality'

Figure: Fluctuations of the Cosmic Microwave Background Radiation (CMBR) (Source: Planck 2018).

KORKARYKERKER OQO

Gaussian fields Two important examples

- 1. Random Plane wave
	- $K(x) = J_0(|x|)$ the 0-th Bessel function
	- \triangleright ν is normalised Lebesgue measure on the unit circle
	- Realisations of f are eigenfunctions of the Laplacian with eigenvalue -1
- 2. Bargmann-Fock field
	- $K(x) = \exp(-|x|^2/2)$
	- \triangleright $\nu(t) = \exp(-|t|^2/2) dt$
	- Scaling limit of random homogeneous polynomials on $\mathbb{R}P^2$

(a) Nodal set (i.e. zero level set) of Random Plane Wave

(b) Nodal set of Bargmann-Fock field

KORK EXTERNE PROVIDE

Number of excursion/level sets First moment results

 2990 D.

イロト イ押 トイミト イミト

Let $N_{ES}(\ell, R)$ be the number of components of $\{f \geq \ell\}$ in $B(R)$ and $N_{LS}(\ell, R)$ the corresponding number for ${f = \ell}$.

- \blacktriangleright Main quantity of interest in my thesis
- \triangleright Difficult to study due to non-locality

Let $N_{ES}(\ell, R)$ be the number of components of $\{f > \ell\}$ in $B(R)$ and $N_{LS}(\ell, R)$ the corresponding number for ${f = \ell}$.

- \blacktriangleright Main quantity of interest in my thesis
- \triangleright Difficult to study due to non-locality

Theorem (Nazarov-Sodin 2016, Kurlberg-Wigman 2017)

There exists $c_{ES}(\ell) > 0$ such that

$$
\mathbb{E}(N_{ES}(\ell,R))=c_{ES}(\ell)\cdot \pi R^2+O(R) \quad \text{as } R\to\infty.
$$

If f is ergodic then

$$
N_{ES}(\ell,R)/(\pi R^2) \to c_{ES}(\ell)
$$

a.s. and in L^1 as $R\to\infty$. The same result holds if N_{FS} and c_{FS} are replaced by N_{FS} and c_{FS} respectively.

In The proof relies on an ergodic argument and the fact that the number of components is 'semi-local'.

Oxford **Mathematics**

KORKAR KERKER ST VOOR

Definition Let $g:\mathbb{R}^2\to\mathbb{R}$ have a saddle point x_0 (and no other critical points at the same level). Then x_0 is *lower connected* if it is in the closure of only one component of ${g < g(x_0)}$. Similarly, x_0 is upper connected if it is in the closure of only one component of $\{g > g(x_0)\}\.$

Definition Let $g:\mathbb{R}^2\to\mathbb{R}$ have a saddle point x_0 (and no other critical points at the same level). Then x_0 is *lower connected* if it is in the closure of only one component of ${g < g(x_0)}$. Similarly, x_0 is upper connected if it is in the closure of only one component of $\{g > g(x_0)\}\.$

(a) Lower connected

(b) Upper connected

Proposition For f a C^3 stationary Gaussian field there exists a function p_{s-} such that

 $\mathbb{E} \left(\# \{ \text{Lower connected saddles in } B(R) \text{ at height } \geq \ell \} \right) = \pi R^2 \int^\infty$ \int_{ℓ} p_{s} - (x) dx

There exist corresponding densities $p_{s+}, p_s, p_{m+}, p_{m-}$ for upper connected saddles, saddles, local maxima and local minima.

Oxford **Mathematics**

 \equiv ΩQ

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

Theorem

Let f be a C^{3+} stationary Gaussian field satisfying some non-degeneracy assumptions, then

$$
c_{ES}(\nu,\ell) = \int_{\ell}^{\infty} p_{m^{+}}(x) - p_{s^{-}}(x) dx
$$

$$
c_{LS}(\nu,\ell) = \int_{\ell}^{\infty} p_{m^{+}}(x) - p_{s^{-}}(x) + p_{s^{+}}(x) - p_{m^{-}}(x) dx.
$$

Hence c_{LS} and c_{ES} are absolutely continuous in ℓ . In addition c_{LS} and c_{ES} are jointly continuous in (ν, ℓ) provided ν has a fixed compact support.

Theorem

Let f be a C^{3+} stationary Gaussian field satisfying some non-degeneracy assumptions, then

$$
c_{ES}(\nu,\ell) = \int_{\ell}^{\infty} p_{m^{+}}(x) - p_{s^{-}}(x) dx
$$

$$
c_{LS}(\nu,\ell) = \int_{\ell}^{\infty} p_{m^{+}}(x) - p_{s^{-}}(x) + p_{s^{+}}(x) - p_{m^{-}}(x) dx.
$$

Hence c_{LS} and c_{ES} are absolutely continuous in ℓ . In addition c_{LS} and c_{ES} are jointly continuous in (ν, ℓ) provided ν has a fixed compact support.

- \blacktriangleright This result essentially relies on a deterministic decomposition of excursion sets into critical points
- \blacktriangleright The same decomposition is applied to a simple example to explicitly derive c_{ES} and c_{LS}

KORKARYKERKER POLO

KORKARYKERKER POLO

Theorem Let f be a C^3 stationary Gaussian field such that

- 1. max $_{\alpha\leq 3}|\partial^\alpha K(x)|\leq c|x|^{-(1+\epsilon)}$
- 2. $\mathbb{P}(f \in Arm_0(r,R)) \le c_1(r/R)^{c_2}$

3. the spectral measure has a density around the origin bounded away from 0 then $c_{FS}(\ell)$ and $c_{IS}(\ell)$ are continuously differentiable.

Let f be a C^3 stationary Gaussian field such that

- 1. max $_{\alpha\leq 3}|\partial^\alpha K(x)|\leq c|x|^{-(1+\epsilon)}$
- 2. $\mathbb{P}(f \in Arm_0(r,R)) \le c_1(r/R)^{c_2}$

3. the spectral measure has a density around the origin bounded away from 0 then $c_{FS}(\ell)$ and $c_{IS}(\ell)$ are continuously differentiable.

- \blacktriangleright The one arm decay has been proven elsewhere assuming K is integrable
- ▶ This result holds for Bargmann-Fock but not (as written) for the Random Plane Wave
- \blacktriangleright Differentiability actually follows from

$$
\mathbb{P}\left(\tilde{f}_{\ell} \text{ had an infinite four-arm saddle}\right)=0
$$

where \tilde{f}_{ℓ} is the field conditioned to have a saddle point at the origin.

KORKAR KERKER ST VOOR

Let f be a Gaussian field satisfying the previous assumptions and some further non-degeneracy conditions, or let f be the Random Plane Wave, then $p_{s}-(\ell)/p_{s}(\ell)$ is non-decreasing in ℓ .

Let f be a Gaussian field satisfying the previous assumptions and some further non-degeneracy conditions, or let f be the Random Plane Wave, then $p_{s}-(\ell)/p_{s}(\ell)$ is non-decreasing in ℓ . **Corollary**

For the Random Plane Wave

$$
D_{+}c_{ES}(\ell) > 0 \quad \text{if } \ell \in (-\infty, 0.876]
$$

$$
D^{+}c_{ES}(\ell) < 0 \quad \text{if } \ell \in [1, \infty)
$$

where D_+ , D^+ denote lower and upper Dini-derivatives. For the Bargmann-Fock field there exists $\epsilon > 0$ such that

$$
c'_{ES}(\ell)\begin{cases}>0&\text{for }\ell\in[-\epsilon,0.64]\\<0&\text{for }\ell\in[1.02,\infty)\end{cases}
$$

▶ The proof is to show that $\tilde{f}_\ell - \ell$ is stochastically decreasing in ℓ .

Oxford **Mathematics**

KORKARYKERKER POLO

KORKARYKERKER POLO

Theorem

Let f be a Gaussian field satisfying the previous assumptions (one arm decay, covariance decay etc) and suppose that $c'_{\textit{ES}}(\ell) \neq 0$ then for some $c > 0$

 $\mathsf{Var}(\mathsf{N}_{\mathsf{ES}}(\mathsf{R},\ell)) \ge \mathsf{c} \mathsf{R}^2.$

Theorem

Let f be the Random Plane Wave and $\ell \neq 0$, if $D_+c_{ES} (\ell) > 0$ (or D^{+} c $_{ES}(\ell) < 0)$ then for some $c > 0$

 $\mathsf{Var}(\mathsf{N}_{\mathsf{ES}}(\ell,R)) \ge \mathsf{c} R^3.$

Let f be a Gaussian field satisfying the previous assumptions (one arm decay, covariance decay etc) and suppose that $c'_{\textit{ES}}(\ell) \neq 0$ then for some $c > 0$

 $\mathsf{Var}(\mathsf{N}_{\mathsf{ES}}(\mathsf{R},\ell)) \ge \mathsf{c} \mathsf{R}^2.$

Theorem

Let f be the Random Plane Wave and $\ell \neq 0$, if $D_+c_{ES} (\ell) > 0$ (or D^{+} c $_{ES}(\ell) < 0)$ then for some $c > 0$

 $\mathsf{Var}(\mathsf{N}_{\mathsf{ES}}(\ell,R)) \ge \mathsf{c} R^3.$

- \blacktriangleright These bounds should be sharp for general fields/levels.
- \triangleright We obtain intermediate variance bounds for fields with spectral blowup at the origin.
- In The same results hold if N_{ES} and c_{ES} are replaced by N_{LS} and c_{LS} .

Corollary

For the Bargmann-Fock field:

- \triangleright if $\ell \in (-\epsilon, 0.64) \cup (1.02, \infty)$ then $\textsf{Var}(N_{ES}(\ell, R)) \ge cR^2$,
- If $|\ell| > 1.37$ then $\text{Var}(N_{LS}(\ell, R)) \ge cR^2$.

Corollary

For the Random Plane Wave

- \triangleright if $\ell \in (-\infty, 0) \cup (0, 0.87) \cup [1, \infty)$ then $\text{Var}(N_{ES}(\ell, R)) \ge cR^3$,
- \triangleright if $\ell \in (-\infty, -1] \cup [1, \infty)$ then $\text{Var}(N_{LS}(\ell, R)) \ge cR^3$.

The overall method uses an elementary lemma due to Chatterjee: it is sufficient to show that as $R \to \infty$

- 1. $N_{ES}(\ell, R) N_{ES}(\ell + a_R, R)$ fluctuates with order $R^2 a_R$
- 2. $d_{TV}(N_{FS}(\ell, R), N_{FS}(\ell + a_R, R)) \rightarrow 0$

where $a_R \rightarrow 0$ at a rate depending on the field.

The overall method uses an elementary lemma due to Chatterjee: it is sufficient to show that as $R \to \infty$

- 1. $N_{ES}(\ell, R) N_{ES}(\ell + a_R, R)$ fluctuates with order $R^2 a_R$
- 2. $d_{TV}(N_{FS}(\ell, R), N_{FS}(\ell + a_R, R)) \rightarrow 0$

where $a_R \rightarrow 0$ at a rate depending on the field.

- \triangleright To show the first point, we apply the second moment method, using the fact that the derivative of c_{ES} is bounded away from zero. This relies heavily on the analysis in earlier parts of the thesis.
- \blacktriangleright For the second point;

$$
d_{TV}(N_{ES}(\ell, R), N_{ES}(\ell + a_R, R)) \leq d_{TV}(f, f - a_R)
$$

and bound the latter quantity.

▶ For general fields, we use an abstract Cameron-Martin argument. For the Random Plane Wave we work with an explicit orthogonal expansion.

KORKARYKERKER POLO