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FLUCTUATIONS OF THE NUMBER OF EXCURSION SETS
OF PLANAR GAUSSIAN FIELDS

DMITRY BELIAEV, MICHAEL MCAULEY AND STEPHEN MUIRHEAD

For a smooth, stationary, planar Gaussian field, we consider the number of connected components of its
excursion set (or level set) contained in a large square of area R2. The mean number of components is
known to be of order R2 for generic fields and all levels. We show that for certain fields with positive
spectral density near the origin (including the Bargmann–Fock field), and for certain levels ℓ, these random
variables have fluctuations of order at least R, and hence variance of order at least R2. In particular this
holds for excursion sets when ℓ is in some neighbourhood of zero, and it holds for excursion/level sets
when ℓ is sufficiently large. We prove stronger fluctuation lower bounds of order Rα for α ∈ [1, 2] in
the case that the spectral density has a singularity at the origin. Finally we show that the number of
excursion/level sets for the random plane wave at certain levels has fluctuations of order at least R3/2,
and hence variance of order at least R3. We expect that these bounds are of the correct order, at least for
generic levels.

1. Introduction

Let f : R2
→ R be a continuous, centred stationary Gaussian field. We study the (upper) excursion sets

and level sets of f , that is, the random sets

{ f ≥ ℓ} := {x ∈ R2
| f (x) ≥ ℓ} and { f = ℓ} := {x ∈ R2

| f (x) = ℓ}

for ℓ ∈ R. For a wide class of fields, and for many levels ℓ, we derive lower bounds on the fluctuations
of the number of connected components of these sets contained inside large domains. We expect that
these bounds are of the correct order for all levels to which our results apply, and for all but finitely many
levels. However our results do not apply to the number of level sets at the nodal level ℓ = 0, which may
have lower order fluctuations for some fields (see Section 2B1).

Gaussian fields are used as a model for spatial phenomena in many fields of science (e.g., in quantum
chaos [22], medical imaging [50], oceanography [3], cosmology [4], etc.), and the analysis of their
excursion/level sets has many potential applications [3; 4; 22; 40; 50]. To give an example, cosmological
theories predict that the cosmic microwave background radiation (CMBR) can be modelled as a realisation
of an isotropic Gaussian field on the two-dimensional sphere [4]. One way to test this prediction is to com-
pare geometric properties of the excursion/level sets of the CMBR with the Gaussian model; for instance,
a recent analysis [40] used the number of excursion set components as a test statistic. We expect that a
rigorous understanding of the fluctuations of this quantity will make such statistical analyses more robust.
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The number of connected components of the excursion/level sets of a Gaussian field are inherently
difficult quantities to study because they are “nonlocal”; the number of components in a domain cannot
be counted by partitioning the domain and summing the number of components in each subdomain, since
some components will intersect multiple subdomains. This can be contrasted with other “local” functionals,
such as the length of a level set [30], the number of critical points [38], or the Euler characteristic of an
excursion set [25; 34] (the locality of which can be seen from the Gauss–Bonnet theorem).

Functionals of Gaussian fields which are “nonlocal” cannot easily be analysed using classical tools
such as the Kac–Rice formula [1, Chapter 11] or the Wiener chaos expansion [24; 39]. Nevertheless, the
number of excursion/level set components of planar Gaussian fields has recently been studied using other,
more general, techniques. Nazarov and Sodin [36] used an ergodic argument to prove a law of large
numbers. Specifically, they showed that if f is an ergodic field satisfying some regularity assumptions,
DR := (−R/2, R/2)2 is the open square of side length R centred at the origin, and NLS(DR, ℓ) denotes
the number of components of the level set { f = ℓ} contained in DR (i.e., those which intersect DR but
not ∂ DR), then there exists a constant cLS > 0 such that

NLS(DR, 0)

R2 → cLS

as R → ∞, where convergence occurs in L1 and almost surely. Although this result was stated only for
the nodal set (i.e., the zero level set), the arguments in [36] go through verbatim for excursion/level sets
at arbitrary levels.

Results on the fluctuations of the number of excursion/level set components are comparatively lacking.
Each excursion set component contains at least one critical point, and each level set component “surrounds”
an (upper or lower) excursion set component. Since the number of critical points in a domain has a finite
second moment which scales like the square of the area of the domain [17; 18], it follows that there exists
a positive constant c1 = c1(ℓ) such that, for all sufficiently large R,

Var(NLS(DR, ℓ)) < c1 R4 and Var(NES(DR, ℓ)) < c1 R4, (1-1)

where NES(DR, ℓ) denotes the number of components of { f ≥ ℓ} contained in DR . While the upper
bound of order R4 is attained in certain degenerate cases (see Proposition 2.19), it is expected that the
number of excursion/level sets of generic fields (i.e., those with rapid correlation decay) has variance of
order exactly R2 (see Section 2B).

To the best of our knowledge, up until now the only nontrivial lower bound on the variance of either
NLS(DR, ℓ) or NES(DR, ℓ) is the recent result of Nazarov and Sodin [37] that Var(NLS(DR, 0)) grows at
least like some positive power of R (more precisely, they consider a related model of sequences of Gaussian
fields on the sphere); the exponent in their bound is unspecified and not expected to be optimal. Their
methods would likely extend to proving similar bounds for level sets at nonzero levels or excursion sets.

Nazarov and Sodin [35] have also proven the nontrivial upper bound Var(NLS(DR, 0)) < cR4−2/15 in
the case of random spherical harmonics (this is an ensemble of Gaussian fields on the sphere which have
the random plane wave as their local scaling limit [49]; we consider this model in detail below). This
bound is a byproduct of an exponential concentration result. A slightly weaker concentration result was
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subsequently proven for the random plane wave [41], implying the bound Var(NLS(DR, 0)) < cR4−1/8

for this model. Weaker concentration bounds have also been established for general fields [8; 43].
We prove lower bounds on Var(NLS(DR, ℓ)) and Var(NES(DR, ℓ)) that are, conjecturally at least, of

the correct order. To summarise our main results (see Theorems 2.7 and 2.15), we show that for a wide
class of Gaussian fields there exists an exponent α ∈ [2, 4] such that, for many levels ℓ,

Var(NLS(DR, ℓ)) > cRα and Var(NES(DR, ℓ)) > cRα (1-2)

for some c = c(ℓ) > 0 and all R sufficiently large. The value of α ∈ [2, 4] is explicit and depends on the
behaviour at the origin of the spectral measure of the field (see (2-4) for the definition of the spectral
measure). For fields with rapid correlation decay and positive spectral density at the origin, the bound (1-2)
holds for α = 2, whereas for fields whose spectral measure has a singularity at the origin, (1-2) holds for
an α ∈ (2, 4) that depends on the polynomial exponent of the singularity. We also study the important
special case of the random plane wave, for which we show that the bound (1-2) holds for α = 3.

Bogomolny and Schmit [11] conjectured that the number of nodal domains for the random plane wave
can be modelled by critical bond percolation on Z2. The generalised Bogomolny–Schmit conjecture
states that for a wide class of Gaussian fields their nodal sets and general excursion sets can be modelled
by critical and correspondingly off-critical percolation. Interestingly, our result is inconsistent with the
generalised Bogomolny–Schmit conjecture for the random plane wave and nonzero levels [12] (see the
discussion in Section 2B), although our results do not apply to the nodal set, which is the most important
case of the conjecture.

We establish the variance bounds in (1-2) for a wide range of levels. For general fields, the bound for
excursion sets holds for all levels ℓ in a neighbourhood of zero (the nodal level ℓ = 0 is excluded for the
random plane wave), and when ℓ is sufficiently large the bound holds for both excursion and level sets
(see Corollaries 2.12, 2.14 and 2.17). Indeed, Theorems 2.7 and 2.15 give a sufficient condition for (1-2)
which we expect to be satisfied for all but a very small, finite number of levels ℓ. In fact we suspect (see
Section 2B) that this condition should fail for only one or three values of ℓ (depending on the field).

On the other hand, we do not expect that (1-2) is necessarily true for all levels. While we conjecture
that (1-2) holds for generic levels, we expect that for some fields there exists a finite set of “anomalous”
levels at which the variance is of strictly lower order (see Conjectures 2.21 and 2.22 for a precise statement).
This phenomenon is reminiscent of “Berry cancellation”, i.e., the known fact that, for some fields, such
as the random plane wave, the variance of the length of the nodal set is of lower order than for nonzero
levels [10; 39; 48].

2. Main results

We consider a Gaussian field f : R2
→ R which is continuous, centred and stationary, and let κ(x) :=

E( f (x) f (0)) be its covariance function. Throughout the paper we make the following basic assumption:

Assumption 2.1. The Gaussian field f : R2
→ R is C3-smooth almost surely, and normalised so that, for

each x ∈ R2,
E( f (x)) = 0, Var( f (x)) = 1 and Cov(∇ f (x)) = cI2, (2-1)



108 DMITRY BELIAEV, MICHAEL MCAULEY AND STEPHEN MUIRHEAD

where c is a positive constant and I2 is the 2 × 2 identity matrix. In addition we assume that

max
|α|≤2

|∂ακ(x)| → 0 as |x | → ∞,

and that, for every x ∈ R2
\ {0},

∇
2 f (0) and ( f (x), f (0), ∇ f (x), ∇ f (0)) (2-2)

are nondegenerate multivariate Gaussian random variables.

This assumption implies, in particular, that κ is of class C6 [36, Appendix A.3], and also that the field
is ergodic [36, Appendix B]. We impose the normalisation (2-1) for simplicity; since ( f (0), ∇ f (0)) is
assumed to be nondegenerate we can always apply a linear rescaling and rotation to the domain of f so
that (2-1) holds. A sufficient condition for (2-2) to be nondegenerate is that the support of the spectral
measure (see the definition in (2-4)) contains either an open set or a centred ellipse [7, Lemma A.2].

We begin by formally stating the law of large numbers for excursion/level sets (noting that this
actually holds under weaker conditions than those which we give). We fix an open rectangle D ⊂ R2

centred at the origin. For R ≥ 1, we let DR = {x ∈ R2
: x/R ∈ D} and let NES(DR, ℓ) denote the

number of components of { f ≥ ℓ} contained in DR (i.e., those which intersect DR but not ∂ DR). We
define NLS(DR, ℓ) analogously for { f = ℓ}.

Theorem 2.2 [6; 26; 36]. Let f be a Gaussian field satisfying Assumption 2.1. For each ℓ ∈ R, there exist
cES(ℓ), cLS(ℓ) ≥ 0 such that

E(NES(DR, ℓ)) = cES(ℓ) · Area(D) · R2
+ O(R),

E(NLS(DR, ℓ)) = cLS(ℓ) · Area(D) · R2
+ O(R)

as R → ∞. The constants implied by the O( · ) notation are independent of ℓ. Furthermore

NES(DR, ℓ)

Area(D) · R2 → cES(ℓ) and
NLS(DR, ℓ)

Area(D) · R2 → cLS(ℓ)

almost surely and in L1.

The limiting constants cES(ℓ) and cLS(ℓ) describe the asymptotic density of excursion sets and level
sets respectively. Since they are defined implicitly, very little is known rigorously about them. In [6]
a representation was given in terms of critical points of various types. For R > 0 and a ≤ b, we define
Nh(DR, [a, b]), for h = m+, m−, s+, s−, to be the number of local maxima, local minima, upper
connected saddles and lower connected saddles respectively of f in DR with level in [a, b] (see [6] for the
definition of upper/lower connected saddles; the precise definition has no relevance to the current paper).

Theorem 2.3 [6, Proposition 1.8, Theorem 1.9]. Let f be a Gaussian field satisfying Assumption 2.1, and
let D be an open rectangle centred at the origin. Then for all R > 0 and a ≤ b,

cES(a) − cES(b) =
1

Area(D)R2

(
E
(
Nm+(DR, [a, b]) − Ns−(DR, [a, b])

))
,
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and

cLS(a) − cLS(b)

=
1

Area(D)R2

(
E
(
Nm+(DR, [a, b]) − Ns−(DR, [a, b])

)
+ E

(
Ns+(DR, [a, b]) − Nm−(DR, [a, b])

))
.

It can be deduced from the above representation that cES and cLS are absolutely continuous. In [7]
additional smoothness and monotonicity properties of cES and cLS were derived; for instance, it was
shown that cES(ℓ) and cLS(ℓ) are continuously differentiable in ℓ for a wide class of fields.

2A. Fluctuations of the number of level/excursion set components. Our main results concern the order
of fluctuations of NES and NLS. To formalise this concept we use the following definition, taken from [15].

Definition 2.4. Let Xn be a sequence of random variables and un a sequence of positive real numbers.
We say that Xn has fluctuations of order at least un if there exist c1, c2 > 0 such that, for all sufficiently
large n and all real numbers a ≤ b with b − a ≤ c1un ,

P(a ≤ Xn ≤ b) ≤ 1 − c2.

Similarly, we say that a collection of random variables (X R)R≥0 has fluctuations of order at least (u R)R≥0

if, for any increasing sequence Rn → ∞, the sequence of random variables X Rn has fluctuations of order
at least u Rn .

It is easy to see that if a collection of random variables (Xn)n≥0 has fluctuations of order at least
(un)n≥0 then it has variance of order at least u2

n , i.e., there exists c > 0 such that

Var(Xn) > cu2
n (2-3)

for all n sufficiently large. On the other hand, having fluctuations of order at least un is a strictly stronger
statement than (2-3), since the latter is consistent with the bulk of the probability mass concentrating on
arbitrarily small scales.

We now present our main results on the fluctuations of NES and NLS, which are divided into three
statements. The first applies to general fields, and in particular to fields that have either (i) fast correlation
decay and positive spectral density at the origin or (ii) spectral measure with a singularity at the origin.
The second concerns the special case of the random plane wave. The third treats a certain class of
somewhat degenerate fields.

2A1. General fields. To state our first result we introduce some additional assumptions on the field f .
Recall that κ is the covariance function of f . Since κ is continuous, Bochner’s theorem states that it is
the Fourier transform of a positive measure µ which is Hermitian (i.e., µ(A) = µ(−A) for any Borel
set A); that is, for all x ∈ R2,

κ(x) =

∫
R2

e2π i t ·x dµ(t). (2-4)

We refer to µ as the spectral measure of the field. For some of our results we will assume that µ has
a density; provided it exists, we denote this by ρ( · ). Under Assumption 2.1 the spectral measure is a
probability measure.
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Assumption 2.5. There exists a neighbourhood V ⊂ R2 of the origin such that the spectral measure µ

has density ρ on V and infV ρ > 0.

The simplest way to guarantee the existence of ρ is to assume that κ ∈ L1; in this case ρ is uniformly
continuous. If we additionally assume that

∫
κ = ρ(0) > 0, then there is a neighbourhood of the origin

where ρ is bounded away from 0. On the other hand, Assumption 2.5 also allows for ρ to have a singularity
at the origin.

Under Assumption 2.5 the support of µ contains an open set, and so the Gaussian vector formed from
f , ∇ f and ∇

2 f at a finite number of distinct points is nondegenerate (see [7, Lemma A.2]).
For the case in which the spectral measure does not have a singularity at the origin, we will need

to assume some extra control over the saddle points of the field. Let x0 ∈ R2 be a saddle point of a
function g ∈ C2

loc(R
2) such that g has no other critical points at the same level as x0. We say that x0 is

four-arm in DR if it is in the closure of two components of {x ∈ DR : g(x) > g(x0)} and two components
of {x ∈ DR : g(x) < g(x0)}. Under some regularity assumptions on the function g, this definition implies
that the four level lines (or “arms”) which “emerge” from x0 will all hit the boundary of DR (i.e., they
will not “join together”). For a ≤ b, let N4-arm(DR, [a, b]) be the number of saddle points of f which are
four-arm in DR and have level in [a, b].

Assumption 2.6. For each open rectangle D centred at the origin and every a ≤ b, there exists a function
δR → 0 as R → ∞ and a constant c > 0 such that, for each R > 1 and a ≤ aR ≤ bR ≤ b,

E
(
N4-arm(DR, [aR, bR])

)
≤ c min{δR R2(bR − aR), R}.

Sufficient conditions for a field to satisfy Assumption 2.6 are given in [7, Corollary 2.12] (this result
actually gives the analogous bound for the expected number of four-arm saddle points in B(R) the ball
of radius R, but since B(cD R) ⊂ DR ⊂ B(CD R) for some constants cD, CD > 0 and all R > 0, the two
statements are equivalent). In particular this assumption is satisfied for isotropic fields whose correlations
are positive and rapidly decaying, which includes the important special case of the Bargmann–Fock field,
i.e., the field with covariance function κ(x) = exp(−|x |

2/2) (see [5] for background).
We can now state our fluctuation lower bound for general fields. Recall that the Dini derivatives are a

generalisation of the usual derivative, and coincide in the case of continuously differentiable functions
(see (3-1) and (3-2) for a formal definition).

Theorem 2.7. Let f be a Gaussian field satisfying Assumptions 2.1 and 2.5. Define g(r)= infx∈B(2r) ρ(x).
Let D ⊂ R2 be an open rectangle centred at the origin and recall that DR = {x ∈ R2

: x/R ∈ D}. Suppose
further that at least one of the following holds:

(1) the field f satisfies Assumption 2.6, or

(2) the spectral measure µ has a singularity at the origin, i.e., g(r) → ∞ as r → 0.

If cES has a positive lower Dini derivative at ℓ (or a negative upper Dini derivative), then (NES(DR, ℓ))R≥0

has fluctuations of order at least R
√

g(1/R), and hence variance of order at least R2g(1/R). The same
conclusion holds if we replace NES and cES with NLS and cLS respectively.
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Remark 2.8. The variance lower bound R2g(1/R) interpolates between R2 (if the spectral density is
bounded at the origin) and o(R4) (note that g(1/R) = o(R2) since ρ is integrable on a neighbourhood of
the origin). This is consistent with the trivial upper bound in (1-1).

Remark 2.9. It is shown in [7] that cES and cLS are continuously differentiable for a wide class of
Gaussian fields, and in this case the conditions on Dini derivatives in Theorem 2.7 are equivalent to the
conditions c′

ES(ℓ) ̸= 0 and c′

LS(ℓ) ̸= 0. We expect that cES and cLS are continuously differentiable in
general, but we lack a comprehensive proof.

For general fields we expect that cES and cLS have nonzero derivative for all but a small finite number of
levels ℓ (see Section 2B). In fact, based on simulations (see [40]) we expect cES to be unimodal. We also
suspect that cLS should be either unimodal or bimodal depending on the field; in [6] we describe a somewhat
degenerate class of fields for which this is true and we show that for certain more interesting fields, including
the random plane wave, cLS is at least bimodal (i.e., has at least two local maxima). We therefore hope that
Theorem 2.7 can eventually be applied to all but a finite number of levels. On the other hand, Theorem 2.7
cannot be applied directly to NLS(DR, 0), since by symmetry c′

LS(0)= 0 whenever the derivative is defined.
In Section 2B we give some motivation for why c′

ES(ℓ) ̸= 0 and c′

LS(ℓ) ̸= 0 are, in a sense, natural
conditions for a lower bound on fluctuations.

Remark 2.10. The case of spectral singularity (g(r) → ∞) is closely related to the case of long-range
dependence, i.e., the case in which κ decays sufficiently slowly so as not to be integrable. In particular,
standard Abel/Tauberian theorems [27, Chapter 1.4] imply that, up to some regularity assumptions, the
asymptotics ρ(x) ∼ |x |

−α as |x | → 0 and κ(x) ∼ |x |
α−2 as |x | → ∞ are equivalent for α ∈ (0, 2). Hence,

broadly speaking, our results shows that if correlations decay polynomially with exponent β ∈ (0, 2),
then the variance of NES and NLS grow at order at least R4−β . This is analogous to known results on
fluctuations of “local” functionals of long-range dependent Gaussian processes and fields [27; 45].

Remark 2.11. Recall that NES(DR, ℓ) and NLS(DR, ℓ) count the number of connected components of
the excursion/level sets that intersect DR but which do not intersect the boundary ∂ DR; a natural question
is whether the result still holds if we include components which intersect the boundary (either with or
without multiplicity for repeated intersections). Since the trivial upper bound on the second moment
of boundary components is O(R2), this is immediate in cases in which the variance bound is of order
exceeding R2. While in the general case it does not follow from our stated results, our proofs can easily
be adapted to cover boundary components, but for brevity we omit the details.

In order to extract from Theorem 2.7 a concrete statement about the fluctuations of NES and NLS, one
needs to show that the (Dini) derivatives of cES and cLS are nonzero for particular levels. In previous
work [7] we proved monotonicity results for cES and cLS implying that this condition holds for certain
ranges of levels. We illustrate this with the Bargmann–Fock field.

Corollary 2.12. Let f be the Bargmann–Fock field and D ⊂ R2 be an open rectangle centred at the origin.
There exists ϵ > 0 (independent of D) such that the following holds. If ℓ ∈ (−ϵ, 0.64)∪ (1.03, ∞) then
(NES(DR, ℓ))R≥0 has fluctuations of order at least R and hence variance of order at least R2. If |ℓ|> 1.03
then (NLS(DR, ℓ))R≥0 has fluctuations of order at least R and hence variance of order at least R2.
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Proof. Assumptions 2.1 and 2.5 are trivially satisfied for the Bargmann–Fock field, and [7, Corollary 2.12]
states that Assumption 2.6 is also satisfied. The corollary then follows from [7, Proposition 2.21], which
states that c′

ES(ℓ) ̸= 0 and c′

LS(ℓ) ̸= 0 for the respective levels given above. □

For general isotropic fields satisfying some additional conditions listed below (Assumption 2.13),
it is shown in [7] that cES and cLS are monotone for similar ranges of levels, and so we draw similar
conclusions for such fields. To be a bit more precise, for each such field there exists ϵ > 0 such that the
fluctuations of (NES(DR, ℓ))R≥0 are of order at least R for ℓ ∈ (−ϵ, C)∪ (

√
2/χ, ∞) and the fluctuations

of (NLS(DR, ℓ))R≥0 are of order at least R for |ℓ| >
√

2/χ . Here χ , given by (2-5) below, is a parameter
controlling the distribution of critical points [16] and C is the positive root of an explicit but rather
complicated equation involving χ , the normal density function and cumulative density function.

Assumption 2.13. The field f satisfies the following:

• f is isotropic (i.e., its law is invariant under rotations) and

χ :=
−

√
3∂(2,0)κ(0)√
∂(4,0)κ(0)

≥ 1. (2-5)

• There exist c, ν > 0 such that, for all |x | ≥ 1,

max
|α|≤3

|∂ακ(x)| ≤ c|x |
−(1+ν).

• The Gaussian vector ( f (0), ∇2 f (0)) is nondegenerate, and for all x ∈ R2,

E

(
f (x)

∣∣∣ f (0) = 0, ∇2 f (0) =

(
1 0
0 0

))
≥ 0, (2-6)

E

(
f (x)

∣∣∣ f (0) = 1, ∇2 f (0) =

(
0 0
0 0

))
≤ 1. (2-7)

• For 0 < r < R, let Armℓ(r, R) denote the “one-arm event” that there exists a component of { f ≥ ℓ}

which intersects both ∂ B(r) and ∂ B(R). Then there exist c1, c2 > 0 such that for any 1 < r < R

P( f ∈ Arm0(r, R)) ≤ c1(r/R)c2 . (2-8)

We note that the one-arm decay condition in this assumption has been verified for a wide class of
fields [33; 42] and is believed to hold even more generally. All other parts of this assumption can be
verified directly using the covariance function. More detail on how to verify conditions (2-6) and (2-7) is
given in [7]. We omit this detail here, since Assumption 2.13 will not be used in the current paper other
than for the following corollary.

Corollary 2.14. Let f satisfy Assumptions 2.1, 2.5 and 2.13. Let D ⊂ R2 be an open rectangle centred
at the origin. There exists ϵ > 0 and an explicit constant C > 0 (both independent of D) such that the
following holds. If ℓ ∈ (−ϵ, C) ∪ (2/χ, ∞) then (NES(DR, ℓ))R≥0 has fluctuations of order at least R
and hence variance of order at least R2. If |ℓ| > 2/χ then (NLS(DR, ℓ))R≥0 has fluctuations of order at
least R and hence variance of order at least R2.
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Proof. Under these assumptions, [7, Proposition 2.22] states that cES and cLS are continuously differentiable
and that

c′

ES(ℓ)

{
> 0 for ℓ ∈ (−ϵ, C),

< 0 for ℓ ∈ (
√

2/χ, ∞)
and c′

LS(ℓ) < 0 for ℓ ∈ (
√

2/χ, ∞)

for ϵ, C > 0 as above. Since cLS is symmetric in ℓ, the result then follows from Theorem 2.7. □

The general expression for the constant C in this result is given in the proof of [7, Proposition 2.22].
The expression is straightforward to evaluate numerically for any particular field (in particular, it depends
only on the first two derivatives of the covariance function at the origin).

2A2. The random plane wave. We now turn to the important special case of the random plane wave (RPW),
i.e., the field with covariance function κ(x) = J0(|x |), where J0 is the 0-th Bessel function. The RPW
has applications in quantum chaos as a model for high energy eigenfunctions of the Laplacian (see [9])
and the geometry of its excursion/level sets have been studied by many authors (see [11; 22]).

The RPW does not fall within the scope of Theorem 2.7 since it does not satisfy Assumption 2.5 (its
spectral measure is supported on the unit circle). Nevertheless we can prove the following bound on
fluctuations.

Theorem 2.15. Let f be the random plane wave and let D ⊂ R2 be an open rectangle centred at the
origin. If cES has a positive lower Dini derivative at ℓ ̸= 0 (or a negative upper Dini derivative), then
(NES(DR, ℓ))R≥0 has fluctuations of order at least R3/2, and hence variance of order at least R3. The
same conclusion holds if we replace NES and cES with NLS and cLS respectively.

Remark 2.16. The larger fluctuations of NES and NLS for the RPW (order R3/2 compared to the generic R)
can be understood as a reflection of degeneracies in the RPW, which manifest in at least four ways. First,
the spectral measure µ is supported on a dimension-one subspace (the unit circle). Second, and directly
related to the first, is that realisations of the RPW are solutions of the Helmholtz equation 1 f = − f .
Third, the RPW has long-range dependence, with correlations decaying only at rate 1/

√
|x |. Fourth,

when expanded in a particular orthogonal series (see (3-14)), only order R terms are required to specify
the RPW in a ball of radius R, up to exponentially small error, compared to the generic order R2 terms
for a planar field. In fact, this last property is what ultimately drives our proof of Theorem 2.15.

As for the Bargmann–Fock field, in previous work we verified the Dini derivative condition for cES

and cLS in certain intervals (see [7, Proposition 2.20]). This leads to the following corollary.

Corollary 2.17. Let f be the random plane wave and let D ⊂ R2 be an open rectangle centred at the
origin. If ℓ ∈ (−∞, 0) ∪ (0, 0.87) ∪ [1, ∞) then (NES(DR, ℓ))R≥0 has fluctuations of order at least R3/2

and hence variance of order at least R3. If |ℓ| ≥ 1 then (NLS(DR, ℓ))R≥0 has fluctuations of order at
least R3/2 and hence variance of order at least R3.

2A3. Degenerate fields. Finally we consider the class of fields whose spectral measure has a delta mass
at the origin. In this case, we prove that the variance attains the order of the trivial upper bound in (1-1)
for all levels.
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Assumption 2.18. The stationary Gaussian field f has spectral measure ν = αδ0 + ν∗, where α > 0,
δ0 is a delta-mass at the origin and ν∗ is a (positive) measure. If g is the Gaussian field with spectral
measure ν∗ then g satisfies Assumption 2.1.

Under this assumption, the field f is no longer normalised to have variance one at a point: instead
Var( f (x))=1+α and Var(g(x))=1 for all x ∈R2. This is motivated by the fact that we can represent f as

f = g +
√

αZ ,

where Z is a standard Gaussian variable independent of g. This representation follows immediately from
considering the covariance function of the field on the right. In order to analyse the level sets of f , we apply
Theorem 2.2 to g and consider the additional effect of shifting the overall level due to Z . It is therefore con-
venient to normalise g as in the rest of the paper. Of course, our results apply to any stationary Gaussian field
with spectral mass at the origin: one simply has to rescale the variance to match the normalisation above.

Proposition 2.19. Let f satisfy Assumption 2.18 and let D ⊂ R2 be an open rectangle centred at the
origin. For each ℓ ∈ R, (NES( f ; DR, ℓ))R≥0 has fluctuations of order at least R2. Moreover, there exist
positive constants c1(ℓ) and c2(ℓ) (independent of D) such that

c1 Area(D)2 R4 < Var(NES( f ; DR, ℓ)) < c2 Area(D)2 R4

for all R > 0 sufficiently large. The same conclusions hold if we replace NES and cES with NLS and cLS

respectively.

This result roughly says that adding a random independent level shift to any nondegenerate Gaussian
field (which is equivalent to adding a delta mass to the spectral measure at the origin — see above) ensures
that the number of excursion/level set components of the resulting field has variance of maximal order at
all levels.

We note that this proposition makes no requirement on the derivative of the mean functional at a given
level. Intuitively this holds because the variable Z can always shift the field g to levels at which the
asymptotic density of excursion (or level) components differs. Although this result follows from the
methods we utilise throughout the rest of the paper (to be described in Section 2C) we actually prove
it using more elementary techniques. This result is therefore included primarily for completeness and
comparison, rather than as a significant contribution.

Remark 2.20. There are other degenerate classes of fields for which the variance of NES and NLS can be
shown to be of maximal order R4:

(1) For fields which are doubly periodic (i.e., have spectral measure which is supported on a lattice), it is
evident that NES and NLS have variance of order R4 whenever the variance is finite and nondegenerate
(known under minimal assumptions; see Remark 3.6).

(2) For fields with spectral measure supported on exactly four or five points, the entire distributions
of NES and NLS can be explicitly calculated (see [6, Proposition 1.20] or [31, Proposition 2.1.11]).
In this case the variances of NES and NLS can also be shown to have order R4 whenever they are
nondegenerate.
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2B. Further discussion and open questions. In this section we discuss conjectures, open questions, and
links to other models.

2B1. Anomalous levels. As mentioned above, we believe that the variance bounds in Theorems 2.7
and 2.15 are of the correct order for generic levels, with the possible exception of a finite set of “anomalous”
levels, different for cES and cLS, at which the variance is of lower order.

Conjecture 2.21. Suppose that f satisfies Assumptions 2.1, 2.5 and 2.6 (e.g., the Bargmann–Fock field)
and D ⊂ R2 is an open rectangle centred at the origin. Then for all ℓ ∈ R there exists cvar(ℓ) > 0 such that

Var(NES(DR, ℓ)) ∼ cvar(ℓ) Area(D)R2,

and the same conclusion is true for NLS(DR, ℓ).

Conjecture 2.22. Suppose that f satisfies Assumptions 2.1 and 2.5, and assume that there exist α ∈ (0, 2)

and r0 > 0 such that
ρ(x) = |x |

−α

for all |x | < r0. Let D ⊂ R2 be an open rectangle centred at the origin. Then there exists a (possibly
empty) finite set L ⊂ R and cvar(ℓ) > 0 such that, for all ℓ /∈ L,

Var(NES(DR, ℓ)) ∼ cvar(ℓ) Area(D)(2+α)/2 R2+α,

whereas for all ℓ ∈ L,
Var(NES(DR, ℓ)) ≪ R2+α,

and the same conclusion is true for NLS(DR, ℓ) (with a different set L). If f is the RPW, then the same
conclusion is true with 2 + α replaced with 3.

These conjectures are motivated by a comparison with the known behaviour of the variance of the
Minkowski functionals of the excursion sets, namely the volume of the excursion set, the length of the level
set, and the Euler characteristic of the excursion set (by Hadwiger’s theorem, these form a linear basis for
the set of “local” functionals of the excursion sets that are isometrically invariant [1]). To illustrate this,
let L(R, ℓ) denote the length of the level set { f = ℓ} contained within [−R, R]

2. It is known [25] that
for fields with rapid correlation decay, there exists cvar(ℓ) > 0 such that

Var(L(R, ℓ)) ∼ cvar(ℓ)R2,

whereas for the RPW

Var(L(R, ℓ)) ∼

{
cvar(ℓ)R3 for ℓ ̸= 0,

cvar(0)R2 log R for ℓ = 0.
(2-9)

In other words, for the RPW, L(R, ℓ) has variance of lower order at level ℓ = 0 compared to ℓ ̸= 0. This
phenomenon was first predicted by Berry [10], and has since been proven rigorously [39; 48]. A similar
phenomenon is also known to occur for the volume of the excursion sets and the Euler characteristic
(see [14; 28]); in the latter case the variance reduction also occurs at certain nonzero levels.

The phenomenon of variance reduction can be understood as reflecting the fact that, for the RPW, the
fluctuations of the Minkowski functionals are dominated by the second term in their Wiener chaos expan-
sion, whose coefficient as a function of ℓ happens to vanish at certain levels (see the discussion in [39]).
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The same is also known to be true in the case of spectral singularity at the origin [27, Chapter 3].
In contrast, for fields with rapid correlation decay, many terms in the Wiener chaos expansion have
fluctuations of leading order (see for instance [19]), and so one should not expect anomalous levels since
that would require many coefficients to vanish simultaneously.

2B2. Further questions. Assuming that Conjectures 2.21 and 2.22 are correct, they give rise to a number
of further questions. For simplicity we discuss only the case of the excursion sets, but the analogous
questions can be asked of the level sets.

A first set of questions concerns the anomalous levels L in the case of the RPW or fields with spectral
singularity.

Question 2.23. (1) Is the set of anomalous levels L nonempty? What is its cardinality?

(2) Let C denote the set of critical points of the density functional cES. By Theorems 2.7 and 2.15,
we know that L ⊆ C ∪ {0} for the RPW, whereas L ⊆ C in the spectral singularity case. Are these
inclusions strict?

(3) What is the order of Var(NES(DR, ℓ)) for ℓ ∈ L? Does it depend on the field and on the level? Is it
always of order at least R2?

Based on simulations we expect that cES is unimodal for general fields, which would imply that |C| = 1
and so |L| ≤ 1 (or |L| ≤ 2 for the RPW). We also expect that cLS is either unimodal or bimodal, depending
on the field, which would imply that |L| ≤ 3 for level sets.

A second question concerns the constants cvar(ℓ) for generic levels ℓ /∈ L. For the Minkowski
functionals of the RPW, it is known that cvar(ℓ) is related to the derivative of the first moment (i.e., density)
functional c(ℓ) via

cvar(ℓ) ∝ (ℓc′(ℓ))2
; (2-10)

see the formulas and discussion presented in [13; 14] (actually (2-10) has only been proven for the related
model of the random spherical harmonics, but we expect it to hold also for the RPW). In particular, levels
are anomalous precisely when either ℓ = 0 or c′(ℓ) = 0, which are exactly the conditions for which our
bound in Theorem 2.15 holds. This is evidence that our conditions in Theorem 2.15 are quite natural.

We are not aware of any similar results to (2-10) for the Minkowski functionals of general fields, and
in general it is difficult to compute the value of cvar exactly (even if the density c(ℓ) is well understood
for Minkowski functionals [1]). It would be interesting to know if (2-10), or a similar relationship, holds
in more generality.

Question 2.24. What is the relationship between cvar(ℓ) and the derivative of the density functional c′

ES(ℓ)?
Is cvar(ℓ) ∝ (ℓc′

ES(ℓ))
2 for the RPW?

The third question involves the asymptotic distribution of the fluctuations of NES(DR, ℓ). For the
Minkowski functionals these are known to be Gaussian in many cases (see, e.g., [14; 19; 25; 29; 34]). Non-
Gaussian limit theorems have also been observed in the case of spectral singularity at the origin [27; 45].

Question 2.25. Does NES(DR, ℓ) have asymptotically Gaussian fluctuations? Does it depend on the field
and on the level?
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2B3. Comparison to percolation models. Recent work has established that, in many cases, the geometry
of Gaussian excursion/level sets exhibits the same behaviour as the “clusters” in discrete percolation
models [2; 5; 33; 44]; in particular, this is known for Gaussian fields whose correlations are positive and
rapidly decaying, and has been conjectured by Bogomolny and Schmit to be true for the RPW [11]. It is
therefore of interest to compare our results to what is known for percolation models.

For Bernoulli percolation on Z2 with connection probability p ∈ (0, 1) (see [20] for background on
this and other percolation models), it is known that the variance of the number of clusters in the square of
side length R is of order exactly R2. This matches the order of our lower bound on Var(NES(DR, ℓ)) for
Gaussian fields with positive spectral measure and rapid correlation decay, but is inconsistent with our
bounds in the case of the RPW or fields with spectral singularity. In particular, our results are inconsistent
with some of the stronger claims of the Bogomolny–Schmit conjecture [11; 12], which imply that the
variance of NES(DR, ℓ) and NLS(DR, ℓ) are of order R2 for the RPW when ℓ is close to zero. On the
other hand, the most important case of the Bogomolny–Schmit conjecture is the critical case, which posits
that the nodal set { f = 0} of the RPW has statistics that match critical Bernoulli percolation

(
p =

1
2

)
.

Unfortunately our results do not cover this case.

Question 2.26. What is the order of Var(NLS(DR, 0)) and Var(NES(DR, 0)) for the RPW? Does it agree
with the Bogomolny–Schmit prediction of order R2?

2C. Outline of the method. In this section we give an outline of the proofs of our main results (Theorems
2.7 and 2.15). For clarity we focus only on the bounds for NES; the proof for NLS is near identical.

The foundation of our arguments is a versatile, elementary lemma due to Chatterjee. For random
variables X and Y that take values in a common measurable space, we write dTV(X, Y ) to denote the
total variation distance between their laws:

dTV(X, Y ) = dTV(PX , PY ) = sup{|PX (A) − PY (A)| : A event},

where PX and PY denote the laws of X and Y respectively.

Lemma 2.27 [15, Lemma 1.2]. Let X and Y be real-valued random variables defined on the same
probability space. Then, for real numbers a ≤ b,

P(a ≤ X ≤ b) ≤
1
2(1 + P(|X − Y | ≤ b − a) + dTV(X, Y )).

We combine this with the following definition:

Definition 2.28. Let Xn and Yn be sequences of real-valued random variables defined on the same
probability space and let un be a sequence of positive real numbers. We say that Xn and Yn differ by
order at least un if there exist constants c1, c2 > 0 such that

P(|Xn − Yn| ≥ c1un) ≥ c2

for all n sufficiently large.

Corollary 2.29. Let Xn and Yn be sequences of real-valued random variables defined on the same
probability space and let un be a sequence of positive numbers. If Xn and Yn differ by order at least un

and dTV(Xn, Yn) → 0 as n → ∞, then Xn has fluctuations of order at least un .
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We will apply Corollary 2.29 with X R = NES(DR, ℓ) and YR = NES(DR, ℓ + aR) for a certain
sequence aR → 0 as R → ∞. There are two competing requirements on aR: (i) aR should decay slowly
enough that NES(DR, ℓ) and NES(DR, ℓ + aR) differ by a large order; and (ii) aR must decay quickly
enough that dTV(NES(DR, ℓ), NES(DR, ℓ+ aR)) tends to zero. Let us consider first the order by which
NES(DR, ℓ) and NES(DR, ℓ + aR) differ. Using the assumption that cES has nonzero (Dini) derivative
at ℓ, we show in Lemma 3.4 that

|E(NES(DR, ℓ)− NES(DR, ℓ+ aR))| ≳ R2aR.

Using a bound on the second moment of the number of critical points in a shrinking height window
from [32] (proven using the Kac–Rice theorem), we then show in Lemma 3.5 that(

E
((

NES(DR, ℓ)− NES(DR, ℓ+ aR)
)2 ))1/2

≲ R2aR.

Since these bounds are of the same order, the second moment method implies that NES(DR, ℓ) and
NES(DR, ℓ+ aR) differ by order at least R2aR (see Proposition 3.7).

The next step is to bound the total variation distance between NES(DR, ℓ+ aR) and NES(DR, ℓ). Our
arguments in this step are different for general fields and for the RPW.

We shall make use of two basic properties of the total variation distance. Let X and Y be random
variables taking values in a common measurable space, and let PX and PY denote their respective laws.
Then the following hold:

• Contraction: For any measurable mapping F ,

dTV(F(X), F(Y )) ≤ dTV(X, Y ).

• Pinsker’s inequality:

dTV(X, Y ) ≤

√
1
2 dKL(PX || PY ), (2-11)

where dKL(P || Q) denotes the Kullback–Leibler divergence from Q to P, defined as

dKL(P || Q) =

∫
log

(
dP

dQ

)
dP (2-12)

if P is absolutely continuous with respect to Q, and dKL(P || Q) = ∞ otherwise.

For general fields (i.e., those satisfying the conditions of Theorem 2.7), our approach is to view the
random variable NES(DR, ℓ+ aR) as the number of excursion sets of the field f − aR at level ℓ, and so
by the contraction property of total variation distance,

dTV(NES(DR, ℓ), NES(DR, ℓ+ aR)) ≤ dTV( f, f − aR).

A Cameron–Martin argument then gives an upper bound on this distance in terms of the norm of an
(approximately) constant function in the reproducing kernel Hilbert space induced by the field (see (3-8)
for the definition of this Hilbert space). By bounding this norm in terms of the behaviour of the spectral
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measure at the origin, we can prove that the total variation distance dTV(NES(DR, ℓ), NES(DR, ℓ+ aR))

converges to zero provided that
aR ≪

√
g(1/R)/R.

Combining this with the previous step, we deduce a fluctuation bound of order

R2aR ≈ R
√

g(1/R).

In the case of the RPW (Theorem 2.15), the previous approach fails since nonzero constant functions
cannot be approximated in the reproducing kernel Hilbert space of the RPW (which consists of solutions
to the Helmholtz equation 1 f = − f ). Instead, our approach is to view NES(DR, ℓ+ aR) as the number
of excursion sets of the field ℓ/(ℓ+ aR) f at level ℓ (note that this only holds for ℓ ̸= 0, which is why the
nodal level is excluded from our results on the RPW), and so

dTV(NES(DR, ℓ), NES(DR, ℓ+ aR)) ≤ dTV

(
f, ℓ

ℓ+aR
f
)
. (2-13)

Using an orthogonal expansion for the RPW in terms of Bessel functions (3-14), we show that the
topological behaviour of the RPW on DR is essentially determined by 4R i.i.d. standard Gaussian
variables. Pinsker’s inequality (2-11) therefore allows us to bound (2-13) in terms of the Kullback–Leibler
divergence from one Gaussian vector to another. Since this divergence can be computed explicitly for
Gaussian vectors, as a result we show that dTV(NES(DR, ℓ), NES(DR, ℓ+ aR)) → 0 provided

aR ≪ 1/
√

R.

Combining this with the previous step, we deduce a fluctuation bound of order

R2aR ≈ R3/2.

In both cases the main technical step is to ensure that the approximations (in the general case, approxi-
mating the constant function inside the reproducing kernel Hilbert space, and for the RPW, truncating the
orthogonal expansion) do not radically change the number of excursion set components. To achieve this
we apply Morse theory arguments to bound the change by the number of “quasicritical points”, which we
can control with local computations (see the proofs of Lemmas 3.9 and 3.11 in Section 4).

Note that the requirement that cES has nonzero (Dini) derivative is seemingly crucial to this method. In
particular, it is not possible to obtain a (weaker) lower bound on the fluctuations in the case that c′

ES(ℓ)= 0,
even if we assume c′′

ES(ℓ) ̸= 0, since then the second moment method fails completely (the orders of the
first and second moment bounds do not match).

On the other hand, there are at least three ways in which one might try to extend our results using the
described method:

(1) First, one could prove that cES has a nonzero derivative for a larger range of levels than those in
Corollaries 2.12 and 2.17.

(2) Second, one could find other ways of bounding the total variation distance between the number of
excursion sets at different levels (although we expect that our bounds are of the correct order).
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(3) Third, one could find different variables to compare in Chatterjee’s lemma. Our choice of YR =

NES(DR, ℓ+ aR) was motivated by previous results which made an analysis of X R − YR tractable,
but perhaps other choices of YR might work.

We also believe that this method could be useful to prove fluctuations bounds on other “nonlocal” (or
even “local”) geometric functionals of Gaussian fields, and in principle works equally well for Gaussian
fields in higher dimensions or on manifolds.

3. Fluctuations of the number of excursion/level set components

In this section we prove our main results (Theorems 2.7 and 2.15) following the outline given in Section 2C,
subject to two auxiliary results (Lemmas 3.9 and 3.11) whose proof is deferred to Section 4. We also give
a proof of Proposition 2.19 (in Section 3C, which does not rely on the other results in Sections 3 and 4).

Recall that the lower and upper right Dini derivatives of a function g : R → R at a point x are defined
respectively as

∂+g(x) := lim inf
ϵ↓0

g(x + ϵ) − g(x)

ϵ
and ∂+g(x) := lim sup

ϵ↓0

g(x + ϵ) − g(x)

ϵ
. (3-1)

The lower and upper left Dini derivatives are defined respectively as

∂−g(x) := lim inf
ϵ↓0

g(x) − g(x − ϵ)

ϵ
and ∂−g(x) := lim sup

ϵ↓0

g(x) − g(x − ϵ)

ϵ
. (3-2)

For the sake of simplicity, in this section we focus on NES rather than NLS, and we also assume the level ℓ

is such that either ∂+cES(ℓ) < 0 or ∂+cES(ℓ) > 0 rather than one of the corresponding conditions for left
Dini derivatives. The arguments are near identical in all of these cases, and we will mention any points of
difference.

3A. Varying the level. We first show that NES(DRn , ℓ) and NES(DRn , ℓ+ an) differ by at least a certain
order, for carefully chosen sequences Rn → ∞ and an → 0. There are two main inputs into this result.

The first is a deterministic topological link between NES(DRn , ℓ) and NES(DRn , ℓ+an) derived in [31].
Recall the definition of Nh(DR, [a, b]) for h = m+, m−, s+, s− given prior to Theorem 2.3. We
let Ncrit(DR, [a, b]) denote the number of critical points of f in DR with level in [a, b], and let Ntang(DR)

and Ntang(DR, [a, b]) denote respectively the number of critical points of f |∂ DR and those with level
in [a, b]. Recall also the definition of the number of four-arm saddles N4-arm(DR, [a, b]) given before
Assumption 2.6.

Lemma 3.1 [31, Corollary 2.4.7]. Let f be a Gaussian field satisfying Assumption 2.1 and let D ⊂ R2 be
an open rectangle centred at the origin. Then there exist absolute constants c1, c2 > 1 such that, for all
R > 0 and a < b, almost surely∣∣(NES(DR, a) − NES(DR, b)

)
−

(
Nm+(DR, [a, b]) − Ns−(DR, [a, b])

)∣∣
≤ c1

(
Ntang(DR, [a, b]) + N4-arm(DR, [a, b])

)
≤ c2 Ntang(DR), (3-3)
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so, in particular,

|NES(DR, a) − NES(DR, b)| ≤ c1
(
Ncrit(DR, [a, b]) + Ntang(DR, [a, b])

)
. (3-4)

Remark 3.2. For the analogous statements for level sets (which is also given in [31, Corollary 2.4.7]),
the quantity

Nm+(DR, [a, b]) − Ns−(DR, [a, b])

in (3-3) should be replaced with

Nm+(DR, [a, b]) − Ns−(DR, [a, b]) − Nm−(DR, [a, b]) + Ns+(DR, [a, b]).

We note that this lemma was technically stated in the case that D is a ball centred at the origin, however
the proof in [31] also holds for rectangles. We also mention that this lemma essentially follows from the
proof of [6, Lemma 2.5] (which gives the weaker inequality above and is key to proving Theorem 2.3).

The second input is a moment bound on the number of critical/tangent points of f in DR inside
shrinking height windows, which was proven in [32].

Proposition 3.3. Let f be a Gaussian field satisfying Assumption 2.1 and D ⊂ R2 a rectangle centred at
the origin. Then there exists c > 0 such that for all R > 0 and a < b,

E(Ncrit(DR, [a, b])2) < c min{R4(b − a)2
+ R2(b − a), R4

},

E(Ntang(DR, [a, b])2) < c min{R2(b − a)2
+ R(b − a), R2

}.

Proof. Let cD be the diameter of D. Then Ncrit(DR, [a, b])≤ Ncrit(B(cD R), [a, b]) and [32, Theorem 1.3]
states that the second moment of the latter quantity satisfies the first inequality above.

For the second inequality, we consider the restriction of f to each of the four line segments which
make up the boundary of DR . The tangent points of f are then the critical points of the restricted field.
By Cauchy–Schwarz, it is enough to prove the inequality above for each restriction separately. This is
precisely the conclusion of [32, Theorem A.1]. □

To apply the second moment method, we require a lower bound on the mean of the difference
NES(DRn , ℓ)− NES(DRn , ℓ+ an).

Lemma 3.4. Let f be a Gaussian field satisfying Assumption 2.1 and D ⊂ R2 a rectangle centred at the
origin. If ∂+cES(ℓ) < 0 or ∂+cES(ℓ) > 0 then there exists c > 0 such that, for any positive sequences
an → 0 and Rn → ∞, ∣∣E(

NES(DRn , ℓ)− NES(DRn , ℓ+ an)
)∣∣ > cR2

nan + O(Rn)

for all n sufficiently large. If , in addition, f satisfies Assumption 2.6, then∣∣E(
NES(DRn , ℓ)− NES(DRn , ℓ+ an)

)∣∣ > cR2
nan + O(Rnan) + O(

√
Rnan)

for all n sufficiently large. If right Dini derivatives are replaced with left Dini derivatives, then the same
conclusion holds on replacing NES(DR, ℓ + an) with NES(DR, ℓ − an). These statements also hold if
excursion sets are replaced by level sets.
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Proof. The second inequality in (3-3) states that

NES(DRn , ℓ)− NES(DRn , ℓ+ an) = Nm+(DRn , [ℓ, ℓ+ an)) − Ns−(DRn , [ℓ, ℓ+ an)) + O(Ntang(DRn ))

almost surely, and so by Theorem 2.3,∣∣E(
NES(DRn , ℓ)− NES(DRn , ℓ+ an)

)∣∣ ≥ |cES(ℓ) − cES(ℓ + an)| · Area(D) · R2
n + O

(
E(Ntang(DRn ))

)
.

By Proposition 3.3 and Jensen’s inequality, E(Ntang(DRn )) ≤ cRn for some c > 0 depending only on D
and the distribution of f . Applying our assumption on the Dini derivative of cES then proves the first part
of the lemma.

The tighter inequality in (3-3) states that

NES(DRn , ℓ)−NES(DRn , ℓ+an)

= Nm+(DRn , [ℓ, ℓ+an))−Ns−(DRn , [ℓ, ℓ+an))+O
(
Ntang(DRn , [ℓ, ℓ+an])+N4-arm(DRn , [ℓ, ℓ+an])

)
almost surely, and so by Theorem 2.3 and Assumption 2.6,∣∣E(

NES(DRn , ℓ)− NES(DRn , ℓ+ an)
)∣∣

≥ |cES(ℓ) − cES(ℓ + an)| · Area(D) · R2
n + o(R2

nan) + O
(
E
(
Ntang(DRn , [ℓ, ℓ+ an])

))
.

By Proposition 3.3 and Jensen’s inequality,

E
(
Ntang(DRn , [ℓ, ℓ+ an])

)
= O(Rnan) + O(

√
Rnan),

thus proving the lemma. □

We next prove a matching second moment bound.

Lemma 3.5. Let f be a Gaussian field satisfying Assumption 2.1 and D ⊂ R2 be an open rectangle
centred at the origin. There exists c1 > 0 such that, for any positive sequences an → 0 and Rn → ∞,

E
((

NES(DRn , ℓ)− NES(DRn , ℓ+ an)
)2 )

< c1(R4
na2

n + R2
nan), (3-5)

and the same conclusion holds for level sets.

Proof. Combine (3-4) in Lemma 3.1 with the bounds

E(Ncrit(DR, [a, b])2) < c1(R4(b − a)2
+ R2(b − a)),

E(Ntang(DR, [a, b])2) < c1(R2(b − a)2
+ R(b − a))

in Proposition 3.3. □

Remark 3.6. By taking instead the bounds

E(Ncrit(DR, [a, b])2) < cR4 and E(Ntang(DR, [a, b])2) < cR2

in Proposition 3.3, and setting b ≡ ∞ in (3-4), the same argument also establishes the trivial upper
bound (1-1) under Assumption 2.1. (To be precise, we take b → ∞ and apply the monotone convergence
theorem to the squared number of critical/tangent points. We next apply the dominated convergence
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theorem to (NES(DR, a) − NES(DR, b))2 as b → ∞, using the squared number of critical and tangent
points with height in [a, ∞) as the dominating variable.) In fact, by applying this argument to a compact
domain B(1), covering B(R) with ≈ R2 copies of B(1) and controlling boundary components, we can
actually derive (1-1) without the condition that max|α|≤2|∂ακ(x)| → 0 as |x | → ∞.

Armed with matching first and second moment bounds, an application of the second moment method
yields a lower bound on the order by which NES(DRn , ℓ) and NES(DRn , ℓ+ an) differ.

Proposition 3.7. Let f be a Gaussian field satisfying Assumption 2.1 and D ⊂ R2 be an open rectangle
centred at the origin. Assume that ∂+cES(ℓ) < 0 or ∂+cES(ℓ) > 0 and let an → 0 and Rn → ∞ be positive
sequences. Suppose that either of the following conditions hold:

(1) Rnan → ∞ as n → ∞;

(2) f satisfies Assumption 2.6, and R2
nan is bounded away from zero as n → ∞.

Then NES(DRn , ℓ) and NES(DRn , ℓ+ an) differ by order at least R2
nan . This also holds if excursion sets

are replaced by level sets.

Proof. Let

Xn = NES(DRn , ℓ) and Yn = NES(DRn , ℓ+ an).

Under either condition (1) or (2) in the statement of the proposition, Lemma 3.4 shows that there is a
constant c1 > 0 such that

E|Xn − Yn| ≥ |E(Xn − Yn)| > c1 R2
nan

for all n sufficiently large. Combining this with the Paley–Zygmund inequality,

P
(
|Xn − Yn| > 1

2 c1 R2
nan

)
≥ P

(
|Xn − Yn| > 1

2 E(|Xn − Yn|)
)

≥
(E|Xn − Yn|)

2

4E((Xn − Yn)2)
. (3-6)

Combining this with Lemma 3.5 gives

(E|Xn − Yn|)
2

E((Xn − Yn)2)
≥ c2

|E(Xn − Yn)|
2

R4
na2

n + R2
nan

≥ c3
R4

na2
n

R4
na2

n + R2
nan

≥ c4 > 0 (3-7)

for constants c2, c3, c4 > 0 and all n sufficiently large. Combining (3-6) and (3-7) completes the proof. □

3B. Bounding the total variation distance and completion of the proof. We next bound the total variation
distance between the number of excursion sets at different levels, using different arguments for the case
of general fields (i.e., fields satisfying the conditions of Theorem 2.7) and for the RPW. This completes
the proof of the main results (subject to two auxiliary lemmas, the proofs of which are deferred until
Section 4).
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3B1. General fields. We begin by recalling some general theory of Gaussian fields (for which we refer
to [23]). Recall that to a continuous Gaussian field f defined on Rd we can associate a Hilbert space
of functions H ⊂ C(Rd) known as the reproducing kernel Hilbert space (RKHS), or Cameron–Martin
space, defined as the completion of the space of finite linear combinations of the covariance function κ∑

1≤i≤n

aiκ(si , · ), ai ∈ R, si ∈ Rd , (3-8)

equipped with the inner product〈 ∑
1≤i≤n

ai K (si , · ),
∑

1≤ j≤m

a′

j K (s ′

j , · )

〉
H

=

∑
1≤i≤n
1≤ j≤m

ai a′

j K (si , s ′

j ).

The importance of the RKHS for our purposes is this corollary of the Cameron–Martin theorem:

Proposition 3.8. Let f be a continuous Gaussian field defined on some Euclidean space. For every h ∈ H ,

dTV( f, f + h) ≤
1
2∥h∥H .

Proof. Let P and Q denote respectively the laws of f and f + h. The Cameron–Martin theorem (see
[23, Theorems 14.1, 3.33]) states that

dQ

dP
( · ) = exp

{
I (h)( · ) −

1
2∥h∥

2
H
}
,

where I (h) is a certain random variable (known as the Paley–Weiner integral) whose law under P is a
centred Gaussian variable with variance ∥h∥

2
H . Hence

dKL(P || Q) =

∫
log dP

dQ
dP = −

∫
I (h)dP +

1
2∥h∥

2
H =

1
2∥h∥

2
H ,

and the result follows from Pinsker’s inequality (2-11). □

If the Gaussian field f is stationary, the norm ∥h∥H can be written explicitly in terms of the spectral
measure µ. Indeed we can represent H as the Fourier transform of L2

sym(dµ), the space of complex
Hermitian functions square integrable with respect to µ. Specifically, each h ∈ H is of the form F(ĥ dµ)

with a unique ĥ ∈ L2
sym(dµ), and

⟨h1, h2⟩H = ⟨ĥ1, ĥ2⟩L2
sym(dµ).

In particular,
∥h∥H = ∥ĥ∥L2

sym(dµ).

As an immediate consequence, in the case that µ has density ρ, we have that F(ĥ dµ) = F(ĥρ dx);
i.e., ĥ differs from the standard (inverse) Fourier transform F−1(h) by division by ρ. If � := supp(ĥ)

has finite area, this implies the bound

∥h∥
2
H = ∥ĥ∥

2
L2

sym(dµ)
≤ sup{|F−1(h)(x)|2/ρ(x) : x ∈ �} Area(�)

≤
sup{|F−1(h)(x)|2 : x ∈ �} Area(�)

inf{ρ(x) : x ∈ �}
. (3-9)
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We now restrict to the setting of Theorem 2.7, letting f be a Gaussian field satisfying Assumptions 2.1
and 2.5. We recall that g(r) := infx∈B(2r) ρ(x). For each r > 0, we define hr : R2

→ R by

hr (t) =
1

4r2F[1[−r,r ]2](t) =
sin(2πr t1)

2πr t1

sin(2πr t2)
2πr t2

. (3-10)

Since µ has a density ρ which is uniformly positive near the origin, we see that for r > 0 sufficiently
small, hr is an element of the RKHS H . Then, by (3-9),

∥hr∥H ≤
1

2r
√

g(r)
. (3-11)

We will use hr , as r → 0, to approximate the constant function 1; if we choose positive sequences
Rn → ∞ and rn → 0 such that rn Rn → 0, then by a Taylor expansion,

∥1 − hrn∥C2(DRn ) = O(r2
n R2

n) as n → ∞. (3-12)

In the next lemma we show that this approximation has a negligible effect on the number of excursion
sets; i.e., the number of excursion sets of f − an is well approximated by the number of excursion
sets of f − anhrn for an appropriate choice of rn . We extend our previous notation NES(DR, ℓ) slightly,
defining NES(g; DR, ℓ) for g ∈ C2

loc(R
2) to be the number of components of {g ≥ ℓ} contained in DR (so

that NES(DR, ℓ) = NES( f ; DR, ℓ)).

Lemma 3.9. Let f be a Gaussian field satisfying the conditions of Theorem 2.7 and let D ⊂ R2 be an
open rectangle centred at the origin. Fix ℓ ∈ R and let Rn , rn and an be sequences of positive numbers
such that Rn → ∞, rn → 0, an → 0 and rn Rn → 0 as n → ∞. Then there exist c, n0 > 0 such that, for
all n > n0,

E
(
|NES( f − an; Rn, ℓ)− NES( f − anhrn ; Rn, ℓ)|

)
< canr2

n R4
n .

The same conclusion holds for level sets.

We defer the proof of Lemma 3.9 until Section 4. The upshot is that the conclusion of Proposition 3.7
also holds when we replace f − an with f − anhrn .

Our final ingredient for proving Theorem 2.7 is the following elementary lemma:

Lemma 3.10. Let Xn be a sequence of random variables and un a sequence of positive real numbers.
If Xn has fluctuations of order at least δnun for all positive sequences δn converging to zero arbitrarily
slowly, then Xn has fluctuation of order at least un .

Proof. We note that by Definition 2.4, Xn has fluctuations of order un if and only if Xn/un has fluctuations
of order 1. Therefore we may assume un = 1 for all n.

We fix some positive sequence δk → 0 as k → ∞, and suppose that Xn does not have fluctuations
of order at least 1. Then by Definition 2.4, for each k we can find nk > nk−1 and ank < bnk such that
bnk − ank ≤ δ2

k and

P(ank ≤ Xnk ≤ bnk ) > 1 − δ2
k . (3-13)
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By assumption, Xnk has fluctuations of order δk . So there exist absolute constants c1, c2 > 0 such that for
all k sufficiently large (so that δk < c1) we have bnk − ank ≤ c1δk and hence

P(ank ≤ Xnk ≤ bnk ) ≤ δk .

Provided k is large enough, this contradicts (3-13), so we deduce that Xn has fluctuations of order 1, as
required. □

Proof of Theorem 2.7. Let Rn → ∞ and δn → 0 be positive, monotone sequences such that δ2
n Rn → ∞.

If g(r) → ∞ as r → 0 we also choose δn converging to zero sufficiently slowly that δ2
n
√

g(δn/Rn) → ∞

as n → ∞. We apply Proposition 3.7 with an = δ2
n
√

g(δn/Rn)/Rn and deduce that NES( f ; DRn , ℓ)

and NES( f ; DRn , ℓ + an) differ by order at least R2
nan = δ2

n Rn
√

g(δn/Rn). Applying Lemma 3.9 with
rn = δn/Rn and Markov’s inequality we have that, for every ϵ > 0 and n sufficiently large,

P
(
|NES( f − an; DRn , ℓ)− NES( f − anhrn ; DRn , ℓ)| > ϵR2

nan
)
<

canr2
n R4

n

ϵR2
nan

= cδ2
n/ϵ → 0.

Hence NES( f ; DRn , ℓ) and NES( f − anhrn ; DRn , ℓ) also differ by order at least R2
nan . Moreover, by

Proposition 3.8 and (3-11), there is a c0 > 0 such that

dTV(NES( f ; DRn , ℓ), NES( f − anhrn ; DRn , ℓ)) ≤ dTV( f, f − anhrn )

≤ c0∥anhrn∥H

≤ c0an/(2rn
√

g(rn)) = (c0/2)δn → 0,

where we implicitly restrict all fields to the domain DRn when calculating the total variation distance.
Therefore, by Corollary 2.29, we conclude that NES(DRn , ℓ) has fluctuations of order at least R2

nan .
Since δn can be chosen to converge to zero arbitrarily slowly, Lemma 3.10 implies that NES(DRn , ℓ) has
fluctuations of order at least Rn

√
g(1/Rn), completing the proof of the theorem. □

3B2. The random plane wave. We now move onto the proof of Theorem 2.15. It is known that the RPW
has the orthogonal expansion

f (x) =

∑
m∈Z

am J|m|(r)eimθ , (3-14)

where (r, θ) represents x in polar coordinates, Jm is the m-th Bessel function and am = bm + icm = a−m

with b0, (
√

2bm)m∈N and (
√

2cm)m∈N independent standard (real) Gaussians and c0 = 0. (This function is
clearly Gaussian and can be shown to have the correct covariance structure using Graf’s addition theorem
for Bessel functions.) Since Bessel functions decay exponentially quickly in m (see (3-16) below) the
series converges locally uniformly with probability one.

We will use a truncation of this expansion to approximately parametrise f using a finite number of
random variables, but we do so in a slightly unusual way: letting dk be a sequence of independent standard
Gaussian variables, we then write a0 = b0 =

∑
∞

k=1 2−k/2dk and for N ∈ N define

fN (x) =

∑
1≤k≤N

2−k/2dk J0(r) +

∑
1≤|m|≤N

am J|m|(r)eimθ . (3-15)
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The first summation here will clearly approximate a0 J0(r) with exponentially small error as N → ∞.
Known inequalities for Bessel functions [47, Section 8.5, (9)] state that, for all α ∈ (0, 1), m ≥ 0,
and r < αm,

|Jm(r)| ≤ c1e−c2m, (3-16)

so that the terms beyond m ≈ 2R are exponentially small inside B(R). So overall we see that fN will give a
very accurate approximation to f on appropriate domains. The reason for approximating a0 incrementally
(as opposed to just truncating (3-14) after N terms) is technical; it ensures that the remainder f − fN is
nondegenerate at the origin (note that Jn(0) = 0 for all n ≥ 1), which will simplify some of our arguments.

In the next lemma we show that these terms have a bounded effect on the number of excursion sets.

Lemma 3.11. Let f be the random plane wave, and let D ⊂ R2 be an open rectangle centred at the
origin with diameter Diam(D). Fix ℓ∗

∈ R and β ∈ (0, 1). Then there exist c, n0 > 0 such that, for all
ℓ ∈ [ℓ∗

− 1, ℓ∗
+ 1], N ≥ n0 and R · Diam(D) ≤ βN ,

E
(
|NES( f ; DR, ℓ)− NES( fN ; DR, ℓ)|

)
< c.

The proof of Lemma 3.11 is deferred to Section 4. Armed with this lemma we can complete the proof
of Theorem 2.15.

Proof of Theorem 2.15. Let Rn → ∞ be a positive sequence, and an = δn R−1/2
n for some sequence δn > 0

which converges to zero slowly enough that Rnan → ∞ (we will eventually allow δn to converge to zero
arbitrarily slowly). Applying Proposition 3.7 shows that NES( f ; DRn , ℓ) and NES( f ; DRn , ℓ + an) differ
by order at least R2

nan = δn R3/2
n .

Now choose mn = ⌈2 Diam(D) · Rn⌉ (where ⌈x⌉ denotes the least integer greater than or equal to x).
Applying Lemma 3.11 and Markov’s inequality shows that for any ϵ > 0

P
(
|NES( f ; DRn , ℓ)− NES( fmn ; DRn , ℓ)| > ϵR2

nan
)
→ 0

and
P

(
|NES( f ; DRn , ℓ+ an) − NES( fmn ; DRn , ℓ+ an)| > ϵR2

nan
)
→ 0

as n → ∞, so we conclude that NES( fmn ; DRn , ℓ) and NES( fmn ; DRn , ℓ + an) also differ by order at
least δn R3/2

n .
For n sufficiently large (so that ℓ + an is bounded away from zero), fmn (t) ≥ ℓ + an if and only

if ℓ/(ℓ + an) fmn (t) ≥ ℓ. Therefore

NES( fmn ; DRn , ℓ+ an) = NES

(
ℓ

ℓ+an
fmn ; DRn , ℓ

)
.

Since fmn is parametrised by 3mn independent standard Gaussian variables we see that

dTV
(
NES( fmn ; DRn , ℓ), NES( fmn ; DRn , ℓ+ an)

)
= dTV

(
NES( fmn ; DRn , ℓ), NES

(
ℓ

ℓ+an
fmn ; DRn , ℓ

))
≤ dTV

(
N (0, I3mn ),N

(
0,

(
ℓ

ℓ+an

)2
I3mn

))
,
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where in the final expression, dTV denotes the total variation distance between 3mn-dimensional random
vectors. By Pinsker’s inequality (2-11), the square of the above quantity is at most

1
2

dKL

(
N

(
0,

(
ℓ

ℓ+an

)2
I3mn

) ∣∣∣∣∣∣ N (0, I3mn )

)
, (3-17)

where dKL denotes the Kullback–Leibler divergence defined by (2-12). If P and Q are two centred
k-dimensional nondegenerate Gaussian measures with covariances 61 and 62 correspondingly then,
letting X ∼ P,

dKL(P || Q) =

∫
log

(
dP

dQ

)
dP

= E

(
−

1
2

log
(

det 61

det 62

)
−

1
2

X t6−1
1 X +

1
2

X t6−1
2 X

)
=

1
2

(
log

(
det 62

det 61

)
− E

(
Tr(6−1

1 X X t) − Tr(6−1
2 X X t)

))
=

1
2

(
log

(
det 62

det 61

)
− k + Tr(6−1

2 61)

)
,

where in the second line we used that a scalar is equal to its trace, and the trace operator Tr( · ) is invariant
under cyclic permutations, and in the third line we used that E(Tr(6−1

i X X t)) = Tr(6−1
i E(X X t)) =

Tr(6−1
i 61) by linearity. Therefore the quantity in (3-17) is equal to

3mn

4

((
ℓ

ℓ + an

)2

− 1 − ln
((

ℓ

ℓ + an

)2))
≤

c1

4
(6Rn + 1)a2

n

for some constant c1 > 0 depending only on ℓ (the inequality follows from a Taylor expansion of the
logarithm). This bound converges to zero as n → ∞ and so we can apply Corollary 2.29 and conclude that
NES( fmn ; DRn , ℓ) has fluctuations of order at least δn R3/2

n . Applying Lemma 3.11, the same conclusion
is true for NES( f ; DRn , ℓ). Since δn can be chosen to converge to zero arbitrarily slowly, Lemma 3.10
implies that NES( f ; DRn , ℓ) has fluctuations of order at least R3/2

n , as required. □

3C. Proof of Proposition 2.19. We now give a proof of Proposition 2.19 that essentially follows from
the law of large numbers for excursion set components (Theorem 2.2). We note that it is also possible to
prove this result using the methods from Section 3.

Proof of Proposition 2.19. Let f be a Gaussian field satisfying Assumption 2.18, which means it can be
represented as f = g +

√
αZ where g has spectral measure ν∗ and Z is an independent standard Gaussian

variable. We note that by Theorem 2.3, cES(ν
∗, ℓ) is continuous in ℓ and tends to zero as ℓ → ∞. Further-

more, by [6, Corollary 1.12], cES(ν
∗, ℓ) is positive for some ℓ ∈ R (actually for any ℓ > 0). Combining

these facts we see that there exists ϵ > 0 and open sets U1, U2 ⊂ R such that for all ℓ1 ∈ U1 and ℓ2 ∈ U2

cES(ν
∗, ℓ1) > 4ϵ and cES(ν

∗, ℓ2) < ϵ.
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We now choose an arbitrary ℓ ∈ R and a positive, increasing sequence Rn → ∞. Using the independence
of Z and g, and denoting the standard Gaussian probability density by φ, we see that

P
(
NES( f ; DRn , ℓ) ≥ 3ϵ Area(D)R2

n
)
= P

(
NES(g; DRn , ℓ−

√
αZ) ≥ 3ϵ Area(D)R2

n
)

=

∫
R

P
(
NES(g; DRn , ℓ−

√
αx) ≥ 3ϵ Area(D)R2

n
)
φ(x) dx

=

∫
R

P
(
NES(g; DRn , u) ≥ 3ϵ Area(D)R2

n
)
φ

(
ℓ−u
√

α

)
1

√
α

du

≥

∫
U1

P
(
NES(g; DRn , u) ≥ 3ϵ Area(D)R2

n
)
φ

(
ℓ−u
√

α

)
1

√
α

du.

Since g satisfies Assumption 2.1, Theorem 2.2 implies that for each u ∈ U , the probability in the integrand
above converges to one as n → ∞. Applying Fatou’s lemma (and the fact that U is open, so has
positive Lebesgue measure) we see that the integral above is bounded below by a positive constant for
all sufficiently large n.

Applying an identical argument to U2 shows that P
(
NES( f ; DRn , ℓ) ≤ 2ϵ Area(D)R2

n
)

is bounded
below by a positive constant for all sufficiently large n. These two bounds show that NES( f ; DRn , ℓ) has
fluctuations of order at least R2

n (by definition). Since ℓ ∈ R and Rn ↑ ∞ were arbitrary, combining this
with the trivial upper bound on the variance (1-1) (see also Remark 3.6) completes the proof of the result.
Identical arguments apply to level sets. □

4. Perturbation arguments

In this section we prove Lemmas 3.9 and 3.11, thus completing the proof of all results in the paper.
We begin with some heuristics. Let F be a realisation of a random field on a compact domain D. Our

aim is to control the expected difference between the number of components of {F ≥ 0} and {F − p ≥ 0},
where p is a small (possibly random) perturbation. If p is a constant function taking the value c > 0, then
the standard methods of Morse theory show that the difference between these two quantities is at most
the number of critical points of F with level between 0 and c (because the excursion set {F ≥ ℓ} varies
continuously with ℓ unless passing through a critical point of F , in which case the number of components
changes by at most one). Since the number of critical points is a local quantity, we can use the Kac–Rice
formula to bound its mean.

This same reasoning can be applied to more general perturbations p. Assuming some regularity of F
and p (which will be specified below) the number of components of {F − αp ≥ 0} changes continuously
with α unless passing through a value at which 0 is a critical level of F −αp, and it can be shown that at
such points the number of components changes by at most one. Therefore the difference in the number of
excursion sets is bounded above by the number of points at which F − αp = 0 and ∇(F − αp) = 0 for
some α ∈ [0, 1] (plus an analogous term which controls boundary effects, as we work with a bounded
domain). Under our nondegeneracy assumptions, with probability one there is at most one such point
for each α, and for all but finitely many values of α there are no such points. Since the number of these
points is still a local quantity, an application of the Kac–Rice formula will yield Lemmas 3.9 and 3.11.
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Let us formalise the concepts just described. Let D ⊂ R2 be an open rectangle, and let F and p be
C2 functions defined on a neighbourhood of D. Let C denote the set of corners of D and E := ∂D \ C
denote the edges of D. We refer to D, E and C as the strata of D. We say that x in a neighbourhood of D
is a quasicritical point of (F, p) at level α ∈ [0, 1] if (F −αp)(x) = 0 and x is a critical point of F −αp
restricted to the stratum of D (or R2

\D) containing x . So for x ∈ D∪ (R2
\D), this condition says that

(F −αp)(x) = 0 and ∇(F −αp)(x) = 0. For x ∈ E this means that (F −αp)(x) = 0 and ∇(F −αp)(x) is
normal to ∂D at x . For x ∈ C this just says that (F −αp)(x) = 0; the other condition holds vacuously. We
say that a quasicritical point x at level α is nondegenerate if x is a nondegenerate critical point of F −αp
restricted to the stratum containing x (so, for example, if x ∈D, this just says that det ∇2(F −αp)(x) ̸= 0).

We let NQC(F; p,D) denote the number of quasicritical points of (F, p) in D (at any level α ∈ [0, 1]).
If we replace D with a stratum (D, E or C) in this expression, then we mean the number of quasicritical
points restricted to that stratum. For x ∈ E , let v∂(x) and v∂̄(x) denote respectively the unit vectors in the
tangent and normal directions to ∂D, and let ∇∂ and ∇∂̄ denote the derivatives in these respective directions.

Assumption 4.1. Let D ⊂ R2 be an open rectangle. Let F and p be C2 functions defined on a neighbour-
hood of D which satisfy the following:

(1) The quasicritical points of (F, p) in a neighbourhood of D are nondegenerate, all occur at distinct
levels and are not contained in {p = 0}.

(2) If x ∈ ∂D is a quasicritical point of (F, p) at level α then ∇(F − αp)(x) ̸= 0; if, in addition, x ∈ C
then ∇(F − αp)(x) is not parallel to either edge of D which joins at x .

Theorem 4.2. Let D ⊂ R2 be an open rectangle and let (F, p) satisfy Assumption 4.1. Then

|NES(F;D, 0) − NES(F − p;D, 0)| ≤ NQC(F, p,D).

The same conclusion holds on replacing NES with NLS.

This theorem is only a slight generalisation of known results from Morse theory and so its proof is
given in the Appendix.

We can now state our main perturbation result.

Proposition 4.3. Let D ⊂ R2 be an open rectangle and D+ be a fixed compact neighbourhood of D.
Suppose that F and p are independent C3-smooth planar Gaussian fields defined on D+ satisfying the
following conditions:

(1) For each x, y ∈D+ with x ̸= y, the Gaussian vector (F(x), F(y), ∇F(x), ∇F(y)) is nondegenerate.

(2) For each x ∈ D+, the Gaussian vector (∇F(x), ∇2 F(x)) is nondegenerate.

(3) For each x ∈ E , the vectors (F(x), ∇∂ F(x), ∇∂∇∂̄ F(x)) and (F(x), ∇∂ F(x), ∇2
∂ F(x)) are nonde-

generate (as Gaussians).

(4) Either

(a) p is deterministic and the set {p = 0} ∩D+ consists of a finite union of isolated points, or
(b) for each x ∈ D+, the Gaussian vector (p(x), ∇ p(x)) is nondegenerate.
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Then with probability one

|NES(F;D, 0) − NES(F − p;D, 0)| ≤ NQC(F; p,D).

The same conclusion holds on replacing NES with NLS.

Given Theorem 4.2, the proof of this result is a straightforward application of Bulinskaya’s lemma to
various combinations of F , p and their first two derivatives.

Proof. It is sufficient to verify that F and p almost surely satisfy both parts of Assumption 4.1, since then
Theorem 4.2 yields the result.

(1) We first verify that, almost surely, the quasicritical points of (F, p) are at distinct levels. We define
Dn = {(x, y) ∈ D2

+
: |x − y| ≥ 1/n} × [0, 1] and g1 : Dn → R6 by

g1(x, y, α) =


∇(F −αp)(x)

∇(F −αp)(y)

(F −αp)(x)

(F −αp)(y)

 .

Bulinskaya’s lemma [1, Lemma 11.2.10] states that g1 almost surely does not hit 0 ∈ R6 at any point in Dn

provided it is almost surely C1 and that the density of g1(x, y, α) is bounded on a neighbourhood of 0
uniformly in Dn . We know that g1 ∈ C1(Dn) by assumption and so turn to the second condition. Since F
and p are independent, the density of g1(x, y, α) can be given by a convolution over the densities of

(∇F(x), ∇F(y), F(x), F(y)) and α(∇ p(x), ∇ p(y), p(x), p(y)), (4-1)

and therefore it is sufficient to show that the density of either of these vectors is bounded. By assumption,
the covariance matrix of the first vector in (4-1) is nondegenerate for every x ̸= y, and by continuity the
determinant of this covariance matrix is bounded away from zero on the compact set Dn . Since this vector
is Gaussian, this implies that its density is uniformly bounded above and allows us to apply Bulinskaya’s
lemma. Taking a countable union over n completes the proof for quasicritical points in D∪ (D+ \D).

Applying the same argument to g2 : E2
× [0, 1] → R4 and g3 : E ×D+ × [0, 1] → R5 defined by

g2 :=


∇∂(F −αp)(x)

∇∂(F −αp)(y)

(F −αp)(x)

(F −αp)(y)

 and g3 :=


∇∂(F −αp)(x)

∇(F −αp)(y)

(F −αp)(x)

(F −αp)(y)

 ,

proves that, almost surely, the quasicritical points of (F, p) in D∪ (D+ \D) and E are all at distinct levels.
Considering similar functions shows that the quasicritical points in the corners C also occur at disjoint
levels, but we omit this for brevity.

Applying the arguments above to g4 : E × [0, 1] → R3 given by

g4 :=

∇
2
∂ (F −αp)(x)

∇∂(F −αp)(x)

(F −αp)(x)
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shows that the quasicritical points of (F, p) in E are nondegenerate almost surely. A slightly different
version of Bulinskaya’s lemma [3, Proposition 6.5] states that since g5 : D+ × [0, 1] → R3 defined by

g5 :=

(
∇(F −αp)(x)

(F −αp)(x)

)
is almost surely C2 and has a uniformly bounded univariate probability density, there is almost surely
no (x, α) ∈D+ ×[0, 1] such that g5(x, α) = 0 and det ∇2(F −αp)(x) = 0. Hence the quasicritical points
of (F, p) in D ∪ (D+ \ D) are nondegenerate almost surely. Finally, any quasicritical points in C are
vacuously nondegenerate.

It remains to show that (F, p) has no quasicritical points in {p = 0}. In the case that p is deterministic,
we apply Bulinskaya’s lemma to g5 restricted to (D+∩{p =0})×[0, 1] and g6 : (∂D∩{p =0})×[0, 1]→R2

defined by

g6 :=

(
∇∂(F −αp)(x)

(F −αp)(x)

)
,

which gives the result. (Technically in the first case we need only consider one component of ∇(F −αp)

since our domain is one-dimensional.) In the case that the variance of p(x) is nonzero for each x (and so
bounded away from zero by compactness), we define g7 : D+ × [0, 1] → R4 and g8 : E × [0, 1] → R3 by

g7 :=

∇(F −αp)(x)

F(x)

p(x)

 and g8 :=

∇∂(F −αp)(x)

F(x)

p(x)

 .

Once again, Bulinskaya’s lemma (along with the convolution argument) gives the result. For the four
points in C we note that p is nonzero almost surely.

(2) Applying the same arguments to g5 restricted to E ×[0, 1] shows that (F, p) almost surely has no
quasicritical points in E such that ∇(F − αp) = 0. Similarly restricting g6 to C × [0, 1] (where we
define ∇∂ in the appropriate way for each point) proves the second part of this condition. □

We now prove Lemmas 3.9 and 3.11. We state these proofs exclusively for excursion sets; the proofs
for level sets are identical. The simpler case is Lemma 3.9, since the perturbation is deterministic.

Proof of Lemma 3.9 (given Proposition 4.3). For fixed n sufficiently large, we define

F = f − ℓ − an and p = an(hrn − 1).

Then by the definition of hrn in (3-10), the zero set of p|DRn
consists of a single point at the origin (this

also requires n to be sufficiently large). Hence we may apply Proposition 4.3 to the functions F and p on
the domain D = DRn ( f satisfies the conditions of the proposition by Assumptions 2.1 and 2.5), and so it
is sufficient to prove that there exists a c > 0 such that, for n sufficiently large,

E(NQC(F; DRn , p)) < canr2
n R4

n and E(NQC(F; ∂ DRn , p)) < canr2
n R3

n . (4-2)
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We begin with the first bound in (4-2). Define G : DRn × [0, 1] → R3 by

G(x, α) =

(
∇(F −αp)(x)

(F −αp)(x)

)
, (4-3)

and let pG(x,α) denote the density of the (nondegenerate) Gaussian vector G(x, α).
We now apply the Kac–Rice formula to G. Specifically we apply [3, Theorem 6.2 and Proposition 6.5]

(which require G to by C2 almost surely) to conclude that

E(NQC(F; DRn , p))

=

∫∫
DRn ×[0,1]

E

(∣∣∣∣det
(

∇
2(F −αp)(x) ∇(F −αp)(x)

−∇ p(x)t
−p(x)

)∣∣∣∣ ∣∣∣ G(x, α) = 0
)

pG(x,α)(0) dα dx

≤ Area(D)R2
n sup

x∈DRn
α∈[0,1]

E

(∣∣∣∣det
(

∇
2(F −αp)(x) ∇(F −αp)(x)

−∇ p(x)t
−p(x)

)∣∣∣∣ ∣∣∣ G(x, α) = 0
)

pG(x,α)(0).

The density pG(x,α)(0) is bounded above by c1/
√

det 6(x, α), where 6(x, α) is the covariance matrix
of G(x, α) and c1 > 0 is an absolute constant. Using the condition G(x, α) = 0 (which implies that
∇(F − αp)(x) = 0), we have

E

(∣∣∣∣det
(

∇
2(F −αp)(x) ∇(F −αp)(x)

−∇ p(x)t
−p(x)

)∣∣∣∣ ∣∣∣ G(x, α) = 0
)

= |p(x)| · E
(∣∣det(∇2(F − αp)(x))

∣∣ | G(x, α) = 0
)

≤ c2|p(x)| max
|k|=2

max
{
E
(
|∂k F(x)|2 | G(x, α) = 0

)
, |∂k p(x)|2

}
,

where c2 > 0 is an absolute constant and we have expanded the determinant and applied Hölder’s inequality
in the final line. By (3-12),

∥p∥C2(DRn ) = O(an(rn Rn)
2) → 0 as n → ∞.

Hence it suffices to show that
1

det(6(x, α))
and max

|k|=2
E
(
|∂k F(x)|2 | G(x, α) = 0

)
(4-4)

are bounded above, uniformly over n sufficiently large and (x, α) ∈ DRn × [0, 1].
Considering the first term, since p is deterministic and f is stationary,

6(x, α) = Cov
(

∇ f (x)

f (x)

)
= Cov

(
∇ f (0)

f (0)

)
,

which has a nonzero determinant, by Assumption 2.1, that does not depend on x or α.
Now turning to the second term of (4-4), since f is stationary, ( f (x), ∇2 f (x)) is independent of ∇ f (x)

(this is a standard result for stationary Gaussian fields; see [1, Chapter 5]) and so for |k| = 2

E
(
|∂k F(x)|2 | G(x, α) = 0

)
= E

(
|∂k f (x)|2 | f (x) = ℓ + an + αp(x)

)
= E

(
|∂k f (0)|2 | f (0) = ℓ + an + αp(x)

)
, (4-5)
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where the second equality also follows from stationarity of f (recall that p is deterministic). By Gaussian
regression [3, Proposition 1.2], this final expression is continuous in the variable ℓ + an + αp(x). Since
an and ∥p∥C2(DRn ) converge to zero as n → ∞, we see that this variable has a uniformly bounded range
for all n and all (x, α) ∈ DRn ×[0, 1]. Therefore (4-5) is uniformly bounded as required. This establishes
the first bound in (4-2).

We prove the second bound in (4-2) for the number of quasicritical points in each of the four edges (i.e.,
line segments) that make up ∂ DRn separately. Let F∂ and p∂ be the restrictions of F and p respectively
to one of these line segments (viewed as one-dimensional fields). We apply the Kac–Rice formula to

G∂(x, α) =

(
(F ′

∂ −αp′

∂)(x)

(F∂ −αp∂)(x)

)
,

which gives the result once we establish that

E
(∣∣F ′′

∂ (x)
∣∣ | G∂(x, α) = 0

)
, |p′′

∂ (x)| and 1
det(6∂(x, α))

are bounded above uniformly over n sufficiently large and (x, α) ∈ [0, cRn] × [0, 1], where 6∂(x, α)

denotes the covariance matrix of G∂(x, α) and we have parametrised the line segment by [0, cRn] for
some c depending only on D. These facts are proven using arguments near identical to those given
above. □

The proof of Lemma 3.11 is slightly more complex because the perturbation is random, and we require
an additional lemma to control its behaviour:

Lemma 4.4. Let f be the random plane wave and fN the approximation of this expansion given by (3-15).
For each β ∈ (0, 1) and k ∈ N there exists c1, c2 > 0 such that, for all N ≥ 1,

E(∥ f − fN ∥
2
Ck(B(βN ))

) ≤ c1e−c2 N .

Proof. Recall from (3-16) that there exist c1, c2 > 0 such that, for all m ≥ 0 and r ≤ αm,

|Jm(r)| ≤ c1e−c2m . (4-6)

Applying this to the orthogonal expansion (3-14), along with the fact that |J0| ≤ 1 we have

E

(
sup

x∈B(βN )

| f (x) − fN (x)|2
)

≤ E

(( ∑
j>N

2− j/2
|d j | +

∑
|m|>N

c1|am |e−c2|m|

)2 )
≤ c3e−c4 N

for some c3, c4 > 0, which gives the result in the case k = 0.
For the general case k ≥ 1, we differentiate in polar coordinates and use Bessel identities to replace the

resulting terms by linear combinations of Bessel functions. For instance, since

2m Jm(r)

r
= Jm−1(r) + Jm+1(r) and 2J ′

m(r) = Jm−1(r) − Jm+1(r),
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we have that

∂x1 f (x) − ∂x1 fN (x)

=

∑
j>N

−2− j/2d j J1(r) cos(θ) +

∑
|m|>N

ameimθ
(
J ′

|m|
(r) cos(θ) − i sin(θ)(m/r)J|m|(r)

)
=

∑
j>N

−2− j/2d j J1(r) cos(θ) +

∑
|m|>N

1
2ameimθ

(
(J|m|−1(r) − J|m|+1(r)) cos(θ)

− i sin(θ) sgn(m)(J|m|−1(r) + J|m|+1(r))
)
.

Hence by the triangle inequality and (4-6), we have

E
(

sup
x∈B(βN )

|∂x1 f (x) − ∂x1 fN (x)|2
)
≤ c5e−c6 N .

The proof for k > 1 is similar, and we omit the details. □

Proof of Lemma 3.11 (assuming Proposition 4.3). We recall the orthogonal expansion of the random plane
wave in (3-14) and its finite approximation fN in (3-15). We define

F := fN − ℓ and p := fN − f,

which are independent C∞ Gaussian fields. We wish to apply Proposition 4.3 with D = DR . We first
observe that for any x ∈D+, one can easily check that (p(x), ∇ p(x)) is nondegenerate using the orthogonal
expansion in (3-14) (note that by isotropy, it is enough to check nondegeneracy when x = (x1, 0), which
easily follows from independence of the variables bn and cn). This means that the fourth condition of
Proposition 4.3 holds.

The first three conditions of Proposition 4.3 hold if we replace F with f − ℓ (the first two conditions
follow from Assumption 2.1 and by stationarity the third condition is verified by computing the partial
derivatives of order at most four of κ at the origin). By Lemma 4.4, the covariance function of F = fN −ℓ

and its first two derivatives converge uniformly on B(βN ) to those of f − ℓ. This implies that once N
is sufficiently large, F satisfies the same nondegeneracy conditions as f − ℓ on all DR such that
R · Diam(D) ≤ βN .

We have therefore verified all the conditions of Proposition 4.3 and conclude that with probability one,

|NES(F; DR, 0) − NES(F − p; DR, 0)| ≤ NQC(F; p, DR).

To complete the proof of the lemma, it suffices to show that

E(NQC(F; p, DR)) < c1 and E(NQC(F; p, ∂ DR)) < c1 (4-7)

uniformly over N sufficiently large and R · Diam(D) ≤ βN . Arguing as in the proof of Lemma 3.9 (with
one additional application of Hölder’s inequality because p is now random), the first bound in (4-7) follows
from the Kac–Rice formula once we check the following two conditions. First, for all N sufficiently large

sup
x∈B(βN )

E
(
|p(x)|2 | G(x, α) = 0

)1/2
≤

1
N 2 , (4-8)
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where G(x, α) is defined as in (4-3) with pG(x,α) its density. Second, we require that for all multi-indices k
with |k| = 2

E
(
|∂k F(x)|4 | G(x, α) = 0

)
pG(x,α)(0) and E

(
|∂k p(x)|4 | G(x, α) = 0

)
pG(x,α)(0) (4-9)

are bounded above uniformly over (x, α) ∈ B(βN ) × [0, 1] for sufficiently large N .
Since (p, G) is jointly Gaussian, the distribution of p conditional on G is also Gaussian. Therefore in

order to prove (4-8), it is enough to show that

sup
x∈B(βN )

max
{
Var

(
p(x) | G(x, α) = 0

)
, E

(
p(x) | G(x, α) = 0

)2}
≤

1
N 4 .

Conditioning on some elements of a Gaussian vector can only reduce the variance of other elements, so

Var
(

p(x) | G(x, α) = 0
)
≤ Var(p(x)),

and the supremum of this quantity over x ∈ B(βN ) decays exponentially in N by Lemma 4.4. Turning to
the expectation, by Gaussian regression

E(p(x) | G(x, α) = 0) = Cov
(

p(x),

(
∇( fN −αp)(x)

( fN −αp)(x)

))
Var

(
∇( fN −αp)(x)

( fN −αp)(x)

)−1
0

0
ℓ

 .

By Lemma 4.4, as N → ∞ the covariance of (∇( fN −αp)(x), ( fN −αp)(x)) converges uniformly to that
of (∇ f (x), f (x)) (which is constant, since f is stationary). Therefore by the Cauchy–Schwarz inequality,
the above expression is bounded above, for all N sufficiently large, by cE(p(x)2)1/2 for some constant c
depending only on ℓ. Applying Lemma 4.4 then completes the proof of (4-8).

A near identical argument shows that the conditional expectations in each term of (4-9) are uniformly
bounded for N sufficiently large. It therefore remains to show that pG(x,α)(0) is uniformly bounded.
Since this is a Gaussian density, we need only show that the determinant of Var(G(x, α)) is uniformly
bounded away from zero. As N → ∞, this covariance matrix converges uniformly to Var(∇ f (x), f (x)),
which has a nonzero determinant that does not depend on x . This implies the necessary bound and so
completes the proof of the first bound in (4-7).

For the second bound in (4-7), we count the quasicritical points on each component of ∂ DR separately
and bound their expectation using the same argument as above applied to the boundary. □

Appendix: Morse theory arguments

In this appendix we prove Theorem 4.2. Throughout this appendix we always assume that F , p and D
satisfy Assumption 4.1. The results that we need are very similar to classical results from Morse theory.
The main difference is that we work with functions on compact domains with boundary and instead of
considering one function at different levels we consider a smooth family of functions at a single level.
The first modification is addressed by stratified Morse theory. The second is less studied, but very closely
related results have appeared before. The statement that we need is not genuinely new, but we were unable
to find a reference which is applicable in exactly our case. The most relevant results are in [21; 46].
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We start with a very natural statement: as we vary α, the set where gα := F − αp ≥ 0 changes
continuously (in particular, its topology does not change), unless α passes through a value such that
there is a quasicritical point at this level. Our proof of this statement is very similar to the standard flow
arguments used in Morse theory.

Let us define Aα = {x ∈ D : gα(x) ≥ 0}. Our first claim is the following:

Proposition A.1. Let Aα be as above and suppose that (F, p) has no quasicritical points at level α for
α ∈ [α1, α2]. Then Aα1 and Aα2 have the same number of connected components not intersecting ∂D.

Proof. We will prove that the number of connected components of Aα which do not intersect ∂D is
continuous in α, and hence constant. Let us define the flow

dxα

dα
= −∂αgα(xα)

∇gα(xα)

|∇gα(xα)|2
. (A-1)

This defines a smooth flow away from the critical points of gα. An application of the chain rule shows
that gα(xα) is constant in α.

By Dϵ we denote the set of points of D that are a distance at least ϵ away from ∂D and we let
Aα,ϵ = Aα ∩Dϵ . By “quasicritical point of gα” we just mean a quasicritical point of (F, p) at level α

(recall that quasicritical points are defined prior to Assumption 4.1). We emphasise that the quasicritical
points of gα include but do not coincide with the critical points of gα , with the latter being defined in the
usual way (as points y satisfying ∇gα(y) = 0).

Since gα has no quasicritical points we see that all critical points of gα are separated from its nodal set
(the set where gα = 0). Furthermore these critical points and the nodal set depend continuously on α (as
we describe and justify below). We therefore claim that for every α0 ∈ (α1, α2), we can find ϵ, δ > 0 such
that the following hold for all α ∈ [α0 − δ, α0 + δ]:

(1) All components of {gα = 0} ∩D are either contained in D6ϵ , or intersect ∂Dϵ′ transversally for all
0 ≤ ϵ′

≤ 6ϵ (if the component intersects a corner, this means that the line is transversal to both
boundary intervals). All components of {gα = 0} ∩ (D \D6ϵ) have exactly one point on ∂D.

(2) All critical points of gα are at least distance 2ϵ away from {gα = 0} ∩D (this also includes critical
points outside of D). There are no critical points of gα in Dϵ \D6ϵ .

(3) If we start flow (A-1) from a point xα0 which is in an ϵ-neighbourhood of the boundary of Aα0,3ϵ

then |xα0 − xα| < ϵ.

Proof of (1): By compactness, there is a small neighbourhood of the boundary such that all components
of the restriction of the nodal set {gα0 = 0} to this neighbourhood also intersect ∂D. Since there are
no quasicritical points of gα0 on the boundary, all nodal lines (i.e., curves in the nodal set {gα0 = 0})
that intersect ∂D do so transversally. By transversality, the gradient of gα0 at the point where the nodal
line intersects the boundary is not orthogonal to the boundary. By continuity, the same is true in some
neighbourhood. This means that the nodal line intersects ∂Dϵ′ transversally for all sufficiently small ϵ′.
Since “sufficiently small” here depends on the second derivatives of gα0 , by uniform continuity, we can
choose ϵ such that the above claim holds simultaneously for all α sufficiently close to α0 and all ϵ′

≤ 6ϵ.
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Aα0,3ϵ

Aα0

flow

Bα′,3ϵ

Aα′

Figure 1. The gradient flow (A-1) continuously deforms ∂ Aα0,3ϵ to ∂ Bα′,3ϵ . Clearly
Bα′,3ϵ ⊂ Aα′ . Note that the flow might be undefined inside Aα′,3ϵ : we only move the
boundary (although the flow is really defined and controlled everywhere except small
neighbourhoods of critical points, so we can move not only the boundary, but also most
of the domain by this flow, and it is easy to extend the flow in a continuous way to these
small neighbourhoods). Light grey parts are quadrilaterals that can be contracted to the
corresponding arcs on the boundary of Aα0,3ϵ and Bα′,3ϵ respectively.

Proof of (2): It is a standard result that nondegenerate critical points of a smooth family of functions
depend continuously on the parameter. Hence, for all α sufficiently close to α0, all critical points of gα

are ϵ-close to the critical points of gα0 . Since there are no critical points of gα0 on the nodal lines, there
are no critical points in some neighbourhood of {gα = 0}∩D. If gα0 has no critical points on ∂D, then by
the same argument gα has no critical points in some neighbourhood of ∂D for all α sufficiently close
to α0. Finally, if gα0 has any critical points on the boundary, then by the same argument as above, for all α

sufficiently close to α0 all critical points of gα are either in a very small neighbourhood of the boundary
or outside of a larger neighbourhood of the boundary.

Proof of (3): The last part follows from the second one. By compactness, ∂αgα is uniformly bounded.
Since xα0 is away from critical points, we have a uniform lower bound on |∇gα|, and hence the speed of
the flow is uniformly bounded. This means that if δ is sufficiently small, then the flow cannot move by
more than ϵ. Note that the flow is not limited to D, it is defined globally outside of critical points. We
allow the flow to start in D and leave it.

From now on we assume that α0, ϵ and δ are chosen so that these three statements hold. Since gα has
no critical points at level zero, the sets {gα(x) = 0} are made up of C2-smooth curves that either intersect
the boundary of D transversely or do not intersect it at all. This means that Aα \ Aα,3ϵ is a disjoint union
of quadrilaterals (by “quadrilateral” we mean a simply connected domain bounded by a simple piecewise
smooth curve with four marked points; these points are “vertices” and the arcs between them are “edges”
of the quadrilateral). For each component of Aα ∩ ∂D there is a quadrilateral such that its four “sides”
are this boundary component, two subarcs of {gα = 0} and a part of ∂D3ϵ (see Figure 1). Since each
quadrilateral can be retracted to its side, Aα,ϵ is a deformation retract of Aα.

Let us consider α′
∈ [α0 − δ, α0 + δ]. As α0 changes to α′, the flow continuously moves the boundary

of Aα0,3ϵ by at most ϵ. This gives a homotopy of ∂ Aα0,3ϵ and its image. Since the flow is planar, the image
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of ∂ Aα0,3ϵ is the boundary of a domain which is homotopic to Aα0,3ϵ . We denote this domain by Bα′,3ϵ ⊂D.
Since the flow is continuous and preserves gα(xα) the following holds: the parts of ∂ Aα0,3ϵ which are
made of nodal lines of gα0 move to nodal lines of gα′ and the straight parts of ∂ Aα0,3ϵ , where gα0 ≥ 0,
become smooth curves inside Aα′ . Since the flow does not move by more than ϵ, these curves are actually
inside D2ϵ . Moreover, since the flow is invertible, Aα′,4ϵ ⊂ Bα′,3ϵ ⊂ Aα′,2ϵ and Bα′,3ϵ ∩ D4ϵ is equal
to Aα′,4ϵ . In the same way as before, Aα′ \ Bα′,3ϵ is made of quadrilaterals that can be retracted. This
proves that Bα′,3ϵ is a deformation retract of Aα′ , so they have the same topology. This proves that Aα0

and Aα′ have the same topology.
Finally we note that in the above argument, the components of Aα0 which do not intersect ∂D are

mapped by the flow to components of Aα′ which do not intersect ∂D. Therefore the number of such
components is nondecreasing as we move from α0 to α′. By considering the inverse of flow (A-1), we
see that the same is true when moving from α′ to α0. This argument proves that the number of connected
components which intersect ∂D is continuous and hence constant. □

Next we would like to analyse what happens when α passes through a critical level (i.e., the level of a
quasicritical point). Again, this is very similar to standard Morse theory arguments which give a full CW
complex decomposition of excursion sets. Since we are working in the two-dimensional case and only
care about the number of connected components, many arguments can be significantly simplified.

We will control the effects of quasicritical points locally by using a version of the Morse lemma
for manifolds with corners. First we require some definitions from [21]. Recall that for z ∈ K a
submanifold with corners, j (z) is the number such that a neighbourhood of z can be mapped by a chart
to a neighbourhood of zero in [0, ∞) j (z)

× Rn− j (z). For each j , we define the set of z ∈ K with j (z) = j
to be a stratum of K . So in the case that K = D, the three strata are the interior D, the edges E and the
corners C (agreeing with our earlier definition of strata for rectangles).

Definition A.2. Let M be a smooth n-dimensional manifold, K be a submanifold with corners and
g : K → R be a C2 function. We say that g is a Morse function if it satisfies the following:

(1) If H is a stratum of K then any critical points of g|H are nondegenerate.

(2) If H1 and H2 are (distinct) strata of K with z ∈ H1 ⊂ H2 then z is not a critical point of g|H2
.

Lemma A.3 (Morse lemma [21, Lemma 5]). Let M be a smooth n-dimensional manifold, K be a
submanifold with corners and g : K → R be a Morse function. If z ∈ K is a critical point of g restricted
to the stratum of K containing z then there exists λ ∈ {0, 1, . . . , n − j (z)} and a chart (U, (x1, . . . , xn))

with z ∈ U such that

g = g(z) − x2
1 − · · · − x2

λ + x2
λ+1 + · · · + x2

n− j (z) + (−1)σ(n− j (z)+1)xn− j (z)+1 + · · · + (−1)σ(n)xn

holds in U ∩ K for some σ(n − j (z)+ 1), . . . , σ (n) ∈ N. We define this number λ to be the index of the
critical point z.

We note that [21, Lemma 5] is stated slightly differently (with a fixed sign in front of the terms
xn− j (z)+1, . . . , xn) because it is stated under a certain assumption on the signs of components of ∇g.
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We also comment that we only use this lemma in the case n = 2, however for notational convenience
we will split the local variables xi into three groups as above. The convention, of course, will be that
some of these xi are identically zero.

If F and p satisfy Assumption 4.1, then for any x ∈ D such that p(x) ̸= 0, there is a neighbourhood
of x on which F/p is the restriction of a Morse function on D. This follows easily from considering the
gradient and Hessian of F/p.

Proposition A.4. Let D ⊂ R2 be an open rectangle and let (F, p) satisfy Assumption 4.1. Suppose
that (F, p) has a quasicritical point at level β. Then, for δ > 0 sufficiently small, the number of connected
components of Aβ+δ which do not intersect ∂D differs from the corresponding number for Aβ−δ by at
most one (and the corresponding number for Aβ is between these two). The same conclusion holds for the
level sets {F − αp = 0} ∩D for α ∈ {β − δ, β + δ, β}.

This result is almost a corollary of [21, Theorem 8], which gives a CW-decomposition of excursion sets,
but our setting is slightly different, so their result cannot be applied as stated in our situation. It is possible
to modify the proof of [21, Theorem 8] in order to prove Proposition A.4. We do not follow this road.
Instead we give a different proof based on Lemma A.3 and the flow argument used in Proposition A.1.

Proof. By Proposition A.1, it is enough to prove the result for some δ >0 such that there are no quasicritical
points with level in [β −δ, β +δ]\{β}. Let z denote the quasicritical point of (F, p) at level β and choose
δ > 0 such that this is the only quasicritical point with level in [β − δ, β + δ] (this is possible because D
is compact and quasicritical points are isolated). Since p(z) ̸= 0 by Assumption 4.1, we can find a
neighbourhood U of z on which p ̸= 0, and hence F/p is well defined on this neighbourhood. We will
assume p(z)>0; if this value was negative our arguments could be repeated with some sign changes. Since

∇(F/p) =
1
p2 (p∇F − F∇p) =

1
p
(∇F − (F/p)∇p),

it is clear that F −αp has a quasicritical point at x where p(x) ̸= 0 if and only if x is a critical point of F/p
restricted to the stratum of x at level α. It is also obvious that F/p − α ≥ 0 if and only if F − αp ≥ 0,
for points at which p > 0. By Lemma A.3 we have in local coordinates on some possibly smaller
neighbourhood U of z

F/p = β − x2
1 − · · ·− x2

λ + x2
λ+1 + · · ·+ x2

n− j (z) + (−1)σ(n− j (z)+1)xn− j (z)+1 + · · ·+ (−1)σ(n)xn. (A-2)

By further decreasing U , we can assume the following: if there are zero-level lines of F −βp emerging
from z then U is bounded either by a smooth curve which crosses the zero-level lines of F − βp or,
if z ∈ ∂D, by the union of such a curve and a subarc of ∂D. If there are no zero-level lines of F − βp
emerging from z, then the zero set of F −βp in a D-neighbourhood of z is just {z}. We can then choose U
to be such a neighbourhood, and we further assume that the boundary of U is either a circle or the union
of an arc of a circle and a subarc of ∂D. Let B be an even smaller neighbourhood of z such that B ⊂ U .

First we consider the case that there are zero-level lines of F − βp emerging from z. Arguing in the
same way as in the proof of Proposition A.1 we can choose U and B in such a way that all components
of {F − βp ≥ 0} ∩ (U \ B) are quadrilaterals such that their boundaries are made of two subarcs of ∂ B
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0 x2
1 − x2 > 0

β → β ± δ U

0 x2
1 − x2 + δ > 0
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U

0

x2
1 − x2 − δ > 0

Figure 2. Change of the excursion set near a quasicritical point of index 1 on a one-
dimensional stratum. The analysis of other cases is very similar.

and ∂U and two arcs that are either subarcs of {F −βp = 0} or ∂D. The flow (A-1) is uniformly bounded
in a small neighbourhood of {F − βp = 0} \ B and there are no critical points in this neighbourhood. As
before, this implies that there is a sufficiently small δ > 0 such that if we run the flow starting from α = β

and ending inside [β − δ, β + δ] then the curves {F −βp = 0} \ B move by less than dist(B,D \U ). This
means that the topology of the excursion sets Aα and nodal sets {gα = 0} outside of U does not change
(as we pass from α = β − δ to α = β + δ) and the number of arcs where the nodal set intersects ∂U does
not change either. This proves that any change in the number of excursion set components which do not
intersect ∂D must happen inside of U .

In the case that there are no zero-level lines of F − βp emerging from z, we know that F − βp is
bounded away from zero on U \ B and there are no critical points on this set. Therefore in this case we
can also choose δ > 0 such that F − αp is nonzero on U \ B for all α ∈ [β − δ, β + δ]. Once again we
conclude that any change in the topology of Aα for this range of α must occur inside U .

Inside of U , we consider the excursion sets {F/p ≥ α} rather than Aα = {F −αp ≥ 0} because we can
describe the former using the simple coordinates in (A-2). So depending on the dimension of the stratum
containing z and the index of z, we have the following options for the local behaviour in U when α is
close to β:

(1) Dimension 2 (z ∈ D): If the index λ is 0 or 2, then the nodal lines of F − αp do not intersect ∂U .
As α moves from below β to above β, the component of {F/p −α ≥ 0} changes from a small disc,
to a point z, to the empty set or the other way round. If the index is 1, then the excursion component
in U changes from a single component bounded by a hyperbola, to two components separated by
a hyperbola (or the other way round).

(2) Dimension 1 (z ∈ E): At α = β the excursion component is either above a parabola, in which case
the topology does not change, or it is the domain between a subarc of ∂D and a parabola. In the
latter case, the excursion set in U can change from one component to two components (or the other
way round). See Figure 2 for an example.



142 DMITRY BELIAEV, MICHAEL MCAULEY AND STEPHEN MUIRHEAD

(3) Dimension 0 (z ∈ C): In this case, if both σ(1) and σ(2) are the same, then {z} is an isolated
component of the nodal set of F − βp and it can either disappear or become an interval. So the
topology of the excursion set either stays the same or we add one component. If σ(1) ̸= σ(2), then
the nodal line of F − βp is a line through z. When α changes, this line shifts, but the number of
excursion set components does not change.

Summing this up, we see that inside U the number of components of Aα which do not intersect ∂D
cannot change by more than one, and outside U the number of such domains does not change at all.
The arguments above also show that the same is true of the number of nodal components, and so this
completes the proof. □

Proof of Theorem 4.2. This follows immediately from applying Proposition A.4 to each quasicritical point
of (F, p) and Proposition A.1 at levels without such points. □
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