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Gaussian fields
Motivation: cosmology

Figure: Fluctuations of the Cosmic Microwave Background Radiation (CMBR)
(Source: Planck 2018).

▶ Physical theory and evidence confirm that the CMBR is well modelled as a
realisation of a Gaussian field on the sphere [6].

▶ Deviations from this model provide insight about the early universe.

▶ Geometric properties of excursion sets can be used to test for such
deviations [7].

1 / 15



Gaussian fields
Motivation: medical imaging

Figure: Measurements from a PET study of brain activity during a reading task.
(Source: [14]). See [15] for a technical account.
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Gaussian fields
Further applications

▶ Quantum chaos
It is conjectured that for any Riemannian 2-manifold with ‘chaotic’
dynamics, the high-energy eigenfunctions of the Laplacian are well
modelled by Gaussian random fields [4]. (See [8] for a recent overview.)

▶ Atmospheric/climate modelling
Time-dependent models of smooth Gaussian fields on the sphere have
recently been used to model global temperatures [5] and air pollution [12].
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Gaussian fields
Basic setting

▶ Let M be a smooth manifold and f : M → R be a C 2 Gaussian field with
mean zero and variance one (at each point).

▶ The distribution of the field is specified by its covariance function
K : M2 → [−1, 1] defined as

K(x , y) = E[f (x)f (y)] ∀x , y ∈ M.

▶ We are interested in the geometry of the excursion sets

{f ≥ ℓ} := {x ∈ M | f (x) ≥ ℓ}

for ℓ ∈ R.
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Euler characteristic
A rough definition

{f ≥ ℓ}

Figure: A simple excursion set in R2 (left) and a triangulation of the same set (right).

1. The Euler characteristic is an integer valued topological invariant of ‘nice’
sets in Euclidean space

2. The Euler characteristic of a planar set is the number of components
minus the number of ‘holes’

3. This coincides with the graphical definition (#Vertices - #Edges +
#Faces) for a triangulation of the set
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Euler characteristic
Application to Gaussian fields

{f ≥ ℓ1} {f ≥ ℓ2} {f ≥ ℓ3}

Figure: Excursion sets for a function f above levels ℓ1 < ℓ2 < ℓ3.

1. The Euler characteristic of an excursion set for a ‘nice’ planar function can
be decomposed as

Euler characteristic = #Maxima−#Saddles + #Minima.

2. The expectation of this quantity for a Gaussian field can be calculated
using a generalisation of Kac’s counting formula.
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Euler characteristic
Application to Gaussian fields

Figure: Excursion sets {f ≥ ℓ} in black for ℓ = −1 (left), ℓ = 0 (middle) and ℓ = 1
(right) where f : R2 → R has covariance K(x , y) = exp(−|x − y |2/2).

For a stationary, planar Gaussian field

E[EC({f ≥ ℓ} ∩ [−R,R]2)] =
√

det∇2K(0)
(2R)2

(2π)3/2
ℓe−ℓ2/2 + O(R).
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Euler characteristic
Cosmological data

Figure: The observed Euler characteristic of the CMBR restricted to intensities above
the level ν (dots) and the expected value for a Gaussian field (solid curve). Source: [7].

8 / 15



Euler characteristic
Medical imaging

Figure: The observed Euler characteristic for PET data (jagged) and the expected
value for a Gaussian field (smooth) at different thresholds. Source: [15].
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Euler characteristic
References

This type of analysis results from a rich interplay between mathematical theory
and applications!

For more details, see

▶ [14] for a non-technical overview of different applications;

▶ [1] for theoretical development of the Euler characteristic for Gaussian
fields;

▶ [9] for a mathematical development of Gaussian fields with applications in
cosmology.
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Local and non-local functionals

1. A geometric functional of a random field can be thought of as local if it is
an integral of a pointwise function of the field and its derivatives

2. The statistics of such functionals are well understood

3. Local functional examples
▶ Volume of the excursion set
▶ Boundary length of the excursion set
▶ Euler characteristic of the excursion set

4. Non-local functional examples
▶ Number of components of excursion set
▶ Number of times an excursion set crosses a rectangle

5. Non-local functionals have gained attention recently motivated by
applications [13] and for theoretical reasons [2].
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The component count
Law of large numbers

▶ Let f : Rd → R be a stationary, centred, smooth Gaussian field.

▶ Given ℓ ∈ R and R > 0 we let NES(ℓ,R) be the number of connected
components of {f ≥ ℓ} ∩ [−R,R]d .

Theorem (Nazarov-Sodin[10])

If f is ergodic, then there exists c(ℓ) ≥ 0 such that

lim
R→∞

NES(ℓ,R)

(2R)d
= c(ℓ)

almost surely and in L1.

▶ It is straightforward to verify ergodicity using the Fourier transform of the
covariance function.

▶ The result is extremely general: in particular, there is no requirement of
fast correlation decay.

▶ The proof shows that the component count is ‘semi-local’: its value on a
macroscopic domain can be well approximated by summing its value on
mesoscopic domains.
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The component count
Central limit theorem

Assume that f = q ∗W where W is a Gaussian white noise process on Rd and
q satisfies some regularity conditions, including

sup
|α|≤2

|∂αq(x)| ≤ c|x |−β

for some c > 0 and β > 9d and all x ∈ Rd .

Theorem (Beliaev-M.-Muirhead[3])

Given ℓ ∈ R, there exists σ2(ℓ) > 0 such that as R → ∞

Var[NES(ℓ,R)]

(2R)d
→ σ2(ℓ)

and
NES(ℓ,R)− E[NES(ℓ,R)]

(2R)d/2
d−→ N (0, σ2(ℓ)).
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The component count
Proof of CLT

▶ The proof adapts a martingale CLT argument from discrete probability
[11].

▶ Let (Fv )v∈Zd be a ‘lexicographic’ filtration generated by the white noise
W and

Sn :=
NES(ℓ, n)− E[NES(ℓ, n)]

(2n)d/2
.

Then Sn,v := E[Sn|Fv ] defines a ‘lexicographic martingale array’.

▶ A generalisation of the classical martingale CLT states that Sn → N (0, σ2)
provided that the martingale differences Un,v satisfy certain moment
bounds and

∑
v∈Zd U

2
n,v → σ2 in L1.

▶ The latter property follows from an elegant ergodic argument due to
Penrose [11].

▶ The moments bounds follow from relating Un,v to the change in the
component count when the white noise W is resampled on a cube of unit
length centred at v .
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Open questions

▶ Do similar results hold for fields with slowly decaying covariance function?

▶ What happens if we relax the assumptions of staionarity, Gaussianity or
smoothness?

▶ There are many other related open questions regarding the percolation
properties of smooth Gaussian fields [2].

Thank you for listening!
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