
Conformal welding of independent Gaussian multiplicative
chaos measures

Michael McAuley
Technological University Dublin

Joint work with Antti Kupiainen and Eero Saksman

Webinar on Stochastic Analysis,
Beijing Institute of Technology,

19th June 2024

Slides available at
https://michael-mcauley.github.io

https://michael-mcauley.github.io


Outline

1. Schramm-Loewner evolution (SLE) and Liouville quantum gravity (LQG)

2. Sheffield’s welding result

3. An alternative approach



Schramm-Loewner evolution
Motivation

Figure: Random walks with 103 and 105 steps respectively (white) along with their
loop-erasures (colour).

Loop-erased random walk is formed by sequentially removing the loops of a
simple random walk.
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Schramm-Loewner evolution
Definition

▶ Loewner theory: if η is a simple curve (appropriately parameterised) and
gt : H \ η([0, t]) → H conformal then{

∂tgt(z) =
2

gt (z)−Wt
,

g0(z) = z .

for some driving function Wt .

HH \ η([0, t])
gt

▶ Schramm [11] identified the possible scaling limit for LERW as having a
Brownian motion as its driving function. Lawler, Schramm and Werner
proved convergence to the scaling limit [6].

▶ A chordal Schramm-Loewner evolution with parameter κ ≥ 0 is such a
curve with driving function a Brownian motion of diffusivity κ.
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Schramm-Loewner evolution
Subsequent developments

Figure: A simulated SLE path for κ = 2 (left) and κ = 5 (right). Source of code for
simulations: https://github.com/james-m-foster/sle-simulation.

▶ Many other discrete random models are now known or conjectured to have
SLE as their scaling limit.

▶ Led to new results for these models and made rigorous many arguments
(and statements) from the physics literature.

▶ See [5] for further background and references.
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Liouville quantum gravity
Gaussian free field

▶ Given a bounded domain D ⊂ C,
the Gaussian free field h can be
thought of as the Gibbs measure for
the Dirichlet energy

∥f ∥2∇ :=

∫
D

|∇f (x)|2 dx .

▶ More precisely we can define h =
∑

i Xi fi where Xi
ind∼ N (0, 1) and (fi )i is

an orthonormal basis with respect to the Dirichlet norm.

▶ This series is not defined pointwise but converges almost surely in the
space of distributions.
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Liouville quantum gravity
Gaussian free field

▶ The Gaussian free field has strong motivation from the physics literature.
▶ It is also natural to study from a mathematical perspective:

– conformal invariance,
– scaling limit of discrete models,
– generalisation of Brownian motion to higher dimensions.

▶ See [13] or [15] for further background.
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Liouville quantum gravity
Gaussian multiplicative chaos

▶ We wish to define a ‘random surface’ using the Gaussian free field (see
[12] Section 1 for motivation).

▶ A natural way to do so is through the Gaussian multiplicative chaos
measure

µ(dz) := eγh(z) dz

where h is a Gaussian free field on D and γ > 0.

▶ This definition is problematic, since h is not defined pointwise, but can be
made rigorous as

µ(dz) := lim
ϵ↓0

exp

(
γhϵ(z)−

γ2

2
Var[hϵ(z)]

)
dz

where hϵ is a regularisation of h.

▶ We interpret (D, µ) as a conformal parameterisation of a Liouville
quantum gravity surface.
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Liouville quantum gravity
Gaussian multiplicative chaos

Properties:

▶ Conformal invariance of the Gaussian free field implies that Liouville
quantum gravity is conformally covariant.

▶ By choosing D = H, one can define the quantum boundary length
measure ν of the surface.

Broader context:

▶ This construction was motivated the work of Polyakov [9, 8] on conformal
field theory.

▶ In the last 15 years, a signficant mathematical literature has been built on
this construction making much of the physical analysis rigorous.

▶ See [3] for further background.
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Conformal welding
Classical problem

Definition (Conformal welding)

Suppose that ϕ : ∂D → ∂D is a homeomorphism. To solve the conformal
welding problem for ϕ is to find conformal maps f1 : D → D and
f2 : D → C \ D (for some domain D) which extend homeomorphically to the
boundary such that f1|∂D = f2 ◦ ϕ.

D

x1

x2 ϕ

ϕ

f1 f2

D

y1

y2

f1(x2) = f2(y2)

f1(x1) = f2(y1)Ĉ ≃ S2

f1(∂D) = f2(∂D)
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Conformal welding
Jones’ conjecture

▶ Let h be the restriction of the Gaussian free field to ∂D parameterised by
[0, 1] and ‘τ(dx) = eγh(x)dx ’ where γ ∈ [0,

√
2).

▶ Let ϕ : ∂D → ∂D be given by

ϕ(x) =
τ([0, x ])

τ([0, 1])
.

Conjecture

If one can solve the conformal welding problem for ϕ then the boundary curve
should be a (closed loop variant of) Schramm-Loewner evolution.

▶ In [2], it was shown that there is a unique solution to the welding problem
for ϕ which varies continuously with γ ∈ [0,

√
2).
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Conformal welding
Sheffield’s result

Theorem ([12, Theorem 1.3])

There exists a coupling of a Schramm-Loewner evolution η and a Gaussian free
field h on H such that if γ2 = κ then for any z ∈ η([0, t])

νh,γ([z−, 0]) = νh,γ([0, z+])

where g−1
t (z−) = g−1

t (z+) = z and z− ≤ 0 ≤ z+ and νh,γ is the boundary
measure of Liouville quantum gravity.

H

0 z+z−

H \ η([0, t])
gt

z
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Conformal welding
Sheffield’s result

▶ Sheffield’s result can be viewed as confirming a variation of Jones’
conjecture: welding two Gaussian multiplicative chaos measures yields a
Schramm-Loewner evolution.

▶ The result also states that a Schramm-Loewner evolution has a
well-defined ‘quantum length’ with respect to a given Gaussian free field.

▶ The coupling involves taking an independent Gaussian free field and
mapping forward by g−1

t .

▶ See [12] or [3, Chapter 8] for details of the proof.

▶ Sheffield’s welding has inspired a wealth of subsequent work related to
Schramm-Loewner evolutions, Liouville quantum gravity and random
planar maps. (See the introduction to [10] for a selection of references).
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An alternative approach

Question
Can we derive a relationship between SLE and LQG in the setting of Jones’
original conjecture?

Motivation:

▶ Deeper understanding of relationship,

▶ Mild differences in statement of result,

▶ Welding surfaces with different parameter values.
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An alternative approach
Main result

Recall the setting of Jones’ conjecture:

▶ Let h be the restriction of the Gaussian free field to ∂D parameterised by
[0, 1] and ‘τ(dx) = eγh(x)dx ’ where γ ∈ [0,

√
2).

▶ Let ϕ : ∂D → ∂D be given by

ϕ(x) =
τ([0, x ])

τ([0, 1])
.

Theorem (Kupiainen-M.-Saksman 23)

Let ϕ1 and ϕ2 be independent copies of the above homeomorphism with
parameters γ1 and γ2. For γ1, γ2 > 0 sufficiently small, with probability one
there is a solution to the conformal welding problem for ϕ−1

2 ◦ ϕ1 which is
unique up to Möbius transformations.
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An alternative approach
Main result

D

0

x
ϕ−1
2 ◦ ϕ1

ϕ−1
2 ◦ ϕ1

f1 f2

D

0

y

τ (1)([0,x])

τ (1)([0,1])
= τ (2)([0,y ])

τ (2)([0,1])

Ĉ ≃ S2

f1(∂D) = f2(∂D)

f1(0) = f2(0)

f1(x) = f2(y)
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Proof
Step 1: Beltrami equation

▶ We extend ϕ1 and ϕ2 to homeomorphisms Φ1 : D → D and
Φ2 : C \ D → C \ D via the Beurling-Ahlfors extension.

▶ For suitable functions g , the complex dilatation µg is defined by
∂zg = µg∂zg .

▶ To solve the welding problem, it is enough to find a quasiconformal map
F : C → C satisfying the Beltrami equation

µF (z) =

{
µ
Φ−1
1

(z) if z ∈ D
µ
Φ−1
2

(z) if z ∈ C \ D,

since f1 := F ◦ Φ1 and f2 := F ◦ Φ2 each have zero dilatation and satisfy
f1 ◦ ϕ−1

1 = f2 ◦ ϕ−1
2 .
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Proof
Step 1: Beltrami equation

▶ Classical existence theory for quasiconformal maps states that the
Beltrami equation has a solution when the complex dilatation is bounded
uniformly away from one (in absolute value).

▶ This holds when boundary maps are somewhat regular, but fails in our
setting.

▶ We instead consider the sequence of maps Fn satisfying

µFn (z) =

{
n

n+1
µ
Φ−1
1

(z) if z ∈ D
n

n+1
µ
Φ−1
2

(z) if z ∈ C \ D.

▶ Any subsequential limit of (Fn) would satisfy our original Beltrami
equation. Hence if we can prove equicontinuity of (Fn), then by
Arzelà-Ascoli we have a solution to the welding problem.

▶ If we can extend this to uniform Hölder continuity of (Fn), then a
conformal removability result will ensure that our solution is unique.
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Proof
Step 2: Hölder continuity via undistorted annuli

▶ We want to translate uniform bounds on the distortion
1+|µFn |
1−|µFn |

into

uniform bounds on the modulus of continuity (near ∂D).
▶ By a conformal modulus argument, Hölder continuity follows if we can find

sufficiently many annuli around each point whose images under (Fn) are
not too distorted.

Fn

z0

A1

A2

A3

∂D

▶ This would be difficult to do for deterministic annuli (An) since we would
need to control the distortion on the random sets Φ−1

1 (An) and Φ−1
2 (An).
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Proof
Part 2: Hölder continuity via undistorted annuli

▶ Instead we consider images under Φ1 and Φ2 of deterministic ‘half-annuli’.
We can estimate the distortion of Φ−1

1 and Φ−1
2 on such sets which will

control their images under (Fn).

▶ The challenge is to ensure that the images of many half-annuli ‘match up’
to form a full annulus.

C \ ∂D
{
Φ1 on D
Φ2 on C \ D

C \ ∂D
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Proof
Part 2: Hölder continuity via undistorted annuli

▶ For notational convenience, we map ∂D periodically onto R and use
rectangular half-annuli.

C \ R

x

y

{
Ψ1 on H
Ψ2 on C \H

C \ R

Ψ1(x)

Ψ2(y)

z 7→ e2πiz z 7→ e2πiz

C \ ∂D
{
Φ1 on D
Φ2 on C \ D

C \ ∂D
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Proof
Part 2: Hölder continuity via undistorted annuli

▶ We define a family of half-annuli
At(x) ⊂ H of size comparable to ρt > 0

and let Ãt(x) be their reflections in R.

H
At(x)

At+1(x) x + ρt

x + ρt+1/4

x

▶ For each point x in a finely spaced grid of [0, 1], we must find y ∈ [0, 1]
and two increasing sequences (tn)n∈N and (sn)n∈N such that with high

probability, Ψ1(Atn (x)) matches with Ψ2(Ãsn (y)) and Fn has bounded
distortion on the resulting annulus.

▶ By a crude union bound argument, we may assume Ψ1(x) ≈ Ψ2(y).

▶ The remaining conditions are implied by an intersection of events of the
form

τ (1)(x + ρtn I )

τ (1)(x + ρtnJ)
≤ c,

τ (2)(y + ρsn I )

τ (2)(y + ρsnJ)
≤ c,

τ (1)(x + [−ρtn , ρtn ])

τ (2)(y + [−ρsn , ρsn ])
∈
[
1

C
,C

]
for explicit intervals I , J ⊂ [0, 1] and constants c,C > 0.
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Proof
Part 3: Decoupling via white noise decomposition

▶ Let W be a white noise for the hyperbolic measure in H.

▶ If we define Hϵ(x) = W (x +Hϵ) where

H = {|x | ≤ 1/2, y ≥ (2/π) tan(|πx |)} and Hϵ = H ∩ {y ≥ ϵ}

then H := limϵ→0 Hϵ is a representation of the Gaussian free field trace.

0 1
2

− 1
2

H

0 1
2

− 1
2

ϵ

Hϵ
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Proof
Part 3: Decoupling via white noise decomposition

▶ Let τ
(1)
t be the analogue of τ (1) using the white noise restricted to

{y ≤ ρt}.
▶ For sets A ⊂ [x − ρt , x + ρt ], we use the approximation

τ (1)(A) ≈ exp

(
γ1Hρt (x)−

γ2
1

2
Var[Hρt (x)]

)
τ
(1)
t (A\[x−ρt+3/4, x+ρt+3/4])

which will be valid for many values of t with high probability.

0 2ρt

⋃
|a|≤2ρt (H+ a)

At(0)

0

Hρt
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Proof
Part 3: Decoupling via white noise decomposition

▶ Using this approximation, the first type of event we are interested in
becomes

τ (1)(x + ρt I )

τ (1)(x + ρtJ)
≈

ρ−tτ
(1)
t (x + ρt I \ Bt+3/4(x))

ρ−tτ
(1)
t (x + ρtJ \ Bt+3/4(x))

≤ c

where Bt(x) := [x − ρt , x + ρt ].

▶ These events are independent for t, t + 1, t + 2, . . . .

x

At(x)

At+1(x)

▶ The measures ρ−tτ
(1)
t (ρt ·) converge in distribution as t → ∞, yielding

large deviation bounds for the number of above events which occur.
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Proof
Part 4: Random algorithm for matching half-annuli

▶ Using the previous approximation, the second event of interest can be
reduced to

1

C
≤ exp(Xt,s)

ρ−tτ
(1)
t (Bt(x))

ρ−sτ
(1)
s (Bs(y))

≤ C

where

Xt,s := γ1H
(1)

ρt (x)−γ2H
(1)
ρs (y)−

(
1 +

γ2
1

2

)
log(1/ρ)t+

(
1 +

γ2
2

2

)
log(1/ρ)s.

▶ Our goal is to find sequences (tn)n∈N and (sn)n∈N with increments in [1, 2]
(say), such that |Xtn,sn | ≤ C ′ with high probability for a sufficiently dense
subsequence.
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Proof
Part 4: Random algorithm for matching half-annuli

▶ The process Xt,s can be thought of as a ‘two-parameter biased
random-walk’:

Xt+u,s+v − Xt,s ∼ N (d2v − d1u, σ
2
1u + σ2

2v)

independent of Xt,s where

di :=

(
1 +

γ2
i

2

)
log(1/ρ) and σ2

i := γ2
i log(1/ρ).

▶ We therefore choose (tn+1, sn+1) iteratively depending on (tn, sn) so that
the bias of the increment directs Xt,s towards zero.

▶ The resulting process is an oscillating random walk, for which we can
obtain large deviation estimates for the occupation time of [−C ′,C ′].
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Why do we require small parameter values?

▶ The measures τ (1) and τ (2) are well defined for all γ1, γ2 ∈ [0,
√
2) however

our result only holds for γ1, γ2 ∈ [0, ϵ] for some ϵ > 0. Why is this?

▶ Most statements described above hold for all γ1, γ2 ∈ [0,
√
2), however two

arguments require small values:
1. Matching half-annuli centres via the union bound
2. The different events for controlling half-annuli each hold on a subsequence

of (tn, sn) of constant density. To guarantee the intersection of these
events, the density must be close to one which requires γ1, γ2 close to zero.
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Open questions

▶ Can this approach be extended to all γ1, γ2 ∈ [0,
√
2)?

– Progress has been made using a related approach [4].

▶ Can one characterise the welding curves? Are they related to SLE?
– This would be of particular interest when γ1 ̸= γ2.

Thank you for listening!
谢谢
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Further reading

▶ An expository account of Liouville quantum gravity and its relation to
other probabilistic objects [14].

▶ Background on quasi-conformal maps [7] and the conformal welding
problem [1].

▶ Background on the Gaussian free field and Liouville quantum gravity [3].
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