Conformal welding of independent Gaussian multiplicative chaos measures

Michael McAuley Technological University Dublin Joint work with Antti Kupiainen and Eero Saksman

Webinar on Stochastic Analysis, Beijing Institute of Technology, 19th June 2024

Slides available at <https://michael-mcauley.github.io>

Outline

1. [Schramm-Loewner evolution \(SLE\) and Liouville quantum gravity \(LQG\)](#page-2-0)

2. [Sheffield's welding result](#page-18-0)

3. [An alternative approach](#page-29-0)

Schramm-Loewner evolution Motivation

Figure: Random walks with 10^3 and 10^5 steps respectively (white) along with their loop-erasures (colour).

Loop-erased random walk is formed by sequentially removing the loops of a simple random walk.

Schramm-Loewner evolution

Definition

• Loewner theory: if η is a simple curve (appropriately parameterised) and $g_t : \mathbb{H} \setminus \eta([0, t]) \to \mathbb{H}$ conformal then

$$
\begin{cases}\n\partial_t g_t(z) = \frac{2}{g_t(z) - W_t}, \\
g_0(z) = z.\n\end{cases}
$$

for some driving function W_t .

$$
\mathbb{H} \setminus \eta([0, t]) \qquad \qquad \xrightarrow{\mathcal{G}^t} \qquad \qquad \mathbb{H}
$$

- ▶ Schramm [\[11\]](#page-33-0) identified the possible scaling limit for LERW as having a Brownian motion as its driving function. Lawler, Schramm and Werner proved convergence to the scaling limit [\[6\]](#page-32-0).
- A chordal Schramm-Loewner evolution with parameter $\kappa > 0$ is such a curve with driving function a Brownian motion of diffusivity κ .

Schramm-Loewner evolution

Subsequent developments

Figure: A simulated SLE path for $\kappa = 2$ (left) and $\kappa = 5$ (right). Source of code for simulations: <https://github.com/james-m-foster/sle-simulation>.

- ▶ Many other discrete random models are now known or conjectured to have SLE as their scaling limit.
- ▶ Led to new results for these models and made rigorous many arguments (and statements) from the physics literature.
- ▶ See [\[5\]](#page-32-1) for further background and references.

Liouville quantum gravity Gaussian free field

▶ Given a bounded domain $D \subset \mathbb{C}$, the Gaussian free field h can be thought of as the Gibbs measure for the Dirichlet energy

$$
||f||_{\nabla}^2 := \int_D |\nabla f(x)|^2 dx.
$$

- ▶ More precisely we can define $h = \sum_i X_i f_i$ where $X_i \stackrel{\text{ind}}{\sim} \mathcal{N}(0, 1)$ and $(f_i)_i$ is an orthonormal basis with respect to the Dirichlet norm.
- ▶ This series is not defined pointwise but converges almost surely in the space of distributions.

Liouville quantum gravity

Gaussian free field

- ▶ The Gaussian free field has strong motivation from the physics literature.
- \blacktriangleright It is also natural to study from a mathematical perspective:
	- conformal invariance,
	- scaling limit of discrete models,
	- generalisation of Brownian motion to higher dimensions.
- ▶ See [\[13\]](#page-34-0) or [\[15\]](#page-34-1) for further background.

Liouville quantum gravity

Gaussian multiplicative chaos

- ▶ We wish to define a 'random surface' using the Gaussian free field (see [\[12\]](#page-33-1) Section 1 for motivation).
- ▶ A natural way to do so is through the Gaussian multiplicative chaos measure

$$
\mu(dz):=e^{\gamma h(z)}\,dz
$$

where h is a Gaussian free field on D and $\gamma > 0$.

 \blacktriangleright This definition is problematic, since h is not defined pointwise, but can be made rigorous as

$$
\mu(dz) := \lim_{\epsilon \downarrow 0} \exp \left(\gamma h_{\epsilon}(z) - \frac{\gamma^2}{2} \text{Var}[h_{\epsilon}(z)] \right) dz
$$

where h_{ϵ} is a regularisation of h.

 \blacktriangleright We interpret (D, μ) as a conformal parameterisation of a **Liouville** quantum gravity surface.

Liouville quantum gravity

Gaussian multiplicative chaos

Properties:

- ▶ Conformal invariance of the Gaussian free field implies that Liouville quantum gravity is conformally covariant.
- \blacktriangleright By choosing $D = \mathbb{H}$, one can define the quantum boundary length measure ν of the surface.

Broader context:

- \triangleright This construction was motivated the work of Polyakov [\[9,](#page-33-2) [8\]](#page-33-3) on conformal field theory.
- ▶ In the last 15 years, a signficant mathematical literature has been built on this construction making much of the physical analysis rigorous.
- ▶ See [\[3\]](#page-32-2) for further background.

Outline

1. [Schramm-Loewner evolution \(SLE\) and Liouville quantum gravity \(LQG\)](#page-2-0)

2. [Sheffield's welding result](#page-18-0)

3. [An alternative approach](#page-29-0)

Conformal welding

Classical problem

Definition (Conformal welding)

Suppose that $\phi : \partial \mathbb{D} \to \partial \mathbb{D}$ is a homeomorphism. To solve the **conformal** welding problem for ϕ is to find conformal maps $f_1 : \mathbb{D} \to D$ and $f_2 : \mathbb{D} \to \mathbb{C} \setminus D$ (for some domain D) which extend homeomorphically to the boundary such that $f_1|_{\partial\mathbb{D}} = f_2 \circ \phi$.

Conformal welding Jones' conjecture

▶ Let h be the restriction of the Gaussian free field to ∂D parameterised by Let *the* the restriction of the Gaussian free new
[0, 1] and ' $\tau(dx) = e^{\gamma h(x)} dx'$ where $\gamma \in [0, \sqrt{2})$.

► Let $\phi : \partial \mathbb{D} \to \partial \mathbb{D}$ be given by

$$
\phi(x)=\frac{\tau([0,x])}{\tau([0,1])}.
$$

Conjecture

If one can solve the conformal welding problem for ϕ then the boundary curve should be a (closed loop variant of) Schramm-Loewner evolution.

▶ In [\[2\]](#page-32-3), it was shown that there is a unique solution to the welding problem for ϕ which varies continuously with $\gamma \in [0,\sqrt{2})$.

Conformal welding Sheffield's result

Theorem ([\[12,](#page-33-1) Theorem 1.3])

There exists a coupling of a Schramm-Loewner evolution η and a Gaussian free field h on $\mathbb H$ such that if $\gamma^2=\kappa$ then for any $z\in \eta([0,t])$

$$
\nu_{h,\gamma}([z_-,0])=\nu_{h,\gamma}([0,z+])
$$

where $g_t^{-1}(z_-)=g_t^{-1}(z_+)=z$ and $z_-\leq 0\leq z_+$ and $\nu_{h,\gamma}$ is the boundary measure of Liouville quantum gravity.

Conformal welding Sheffield's result

- ▶ Sheffield's result can be viewed as confirming a variation of Jones' conjecture: welding two Gaussian multiplicative chaos measures yields a Schramm-Loewner evolution
- \triangleright The result also states that a Schramm-Loewner evolution has a well-defined 'quantum length' with respect to a given Gaussian free field.
- ▶ The coupling involves taking an independent Gaussian free field and mapping forward by g_t^{-1} .
- ▶ See [\[12\]](#page-33-1) or [\[3,](#page-32-2) Chapter 8] for details of the proof.
- ▶ Sheffield's welding has inspired a wealth of subsequent work related to Schramm-Loewner evolutions, Liouville quantum gravity and random planar maps. (See the introduction to [\[10\]](#page-33-4) for a selection of references).

Outline

1. [Schramm-Loewner evolution \(SLE\) and Liouville quantum gravity \(LQG\)](#page-2-0)

2. [Sheffield's welding result](#page-18-0)

3. [An alternative approach](#page-29-0)

Question

Can we derive a relationship between SLE and LQG in the setting of Jones' original conjecture?

Motivation:

- ▶ Deeper understanding of relationship,
- \blacktriangleright Mild differences in statement of result.
- \blacktriangleright Welding surfaces with different parameter values.

An alternative approach

Main result

Recall the setting of Jones' conjecture:

- ► Let h be the restriction of the Gaussian free field to ∂**D** parameterised by [0, 1] and ' $\tau(dx) = e^{\gamma h(x)}dx$ ' where $\gamma \in [0, \sqrt{2})$.
- ► Let $\phi : \partial \mathbb{D} \to \partial \mathbb{D}$ be given by

$$
\phi(x)=\frac{\tau([0,x])}{\tau([0,1])}.
$$

Theorem (Kupiainen-M.-Saksman 23)

Let ϕ_1 and ϕ_2 be independent copies of the above homeomorphism with parameters γ_1 and γ_2 . For $\gamma_1, \gamma_2 > 0$ sufficiently small, with probability one there is a solution to the conformal welding problem for $\phi_2^{-1}\circ \phi_1$ which is unique up to Möbius transformations.

An alternative approach Main result

- ▶ We extend ϕ_1 and ϕ_2 to homeomorphisms $\Phi_1 : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$ and $\Phi_2 : \mathbb{C} \setminus \overline{\mathbb{D}} \to \mathbb{C} \setminus \overline{\mathbb{D}}$ via the **Beurling-Ahlfors** extension.
- ▶ For suitable functions g, the **complex dilatation** μ_g is defined by $\partial_{\overline{z}}g = \mu_{\mathcal{E}}\partial_zg$.
- \triangleright To solve the welding problem, it is enough to find a quasiconformal map $F: \mathbb{C} \to \mathbb{C}$ satisfying the Beltrami equation

$$
\mu_F(z) = \begin{cases} \mu_{\Phi_1^{-1}}(z) & \text{if } z \in \mathbb{D} \\ \mu_{\Phi_2^{-1}}(z) & \text{if } z \in \mathbb{C} \setminus \mathbb{D}, \end{cases}
$$

since $f_1 := F \circ \Phi_1$ and $f_2 := F \circ \Phi_2$ each have zero dilatation and satisfy $f_1 \circ \phi_1^{-1} = f_2 \circ \phi_2^{-1}.$

Proof Step 1: Beltrami equation

- ▶ Classical existence theory for quasiconformal maps states that the Beltrami equation has a solution when the complex dilatation is bounded uniformly away from one (in absolute value).
- ▶ This holds when boundary maps are somewhat regular, but fails in our setting.
- \triangleright We instead consider the sequence of maps F_n satisfying

$$
\mu_{F_n}(z) = \begin{cases} \frac{n}{n+1}\mu_{\Phi_1^{-1}}(z) & \text{if } z \in \mathbb{D} \\ \frac{n}{n+1}\mu_{\Phi_2^{-1}}(z) & \text{if } z \in \mathbb{C} \setminus \mathbb{D}. \end{cases}
$$

- Any subsequential limit of (F_n) would satisfy our original Beltrami equation. Hence if we can prove equicontinuity of (F_n) , then by Arzelà-Ascoli we have a solution to the welding problem.
- ▶ If we can extend this to uniform Hölder continuity of (F_n) , then a conformal removability result will ensure that our solution is unique.

Step 2: Hölder continuity via undistorted annuli

- ▶ We want to translate uniform bounds on the **distortion** $\frac{1+|\mu_{F_n}|}{1-|\mu_{F_n}|}$ $\frac{1-|\mu_{F_n}|}{1-|\mu_{F_n}|}$ into uniform bounds on the modulus of continuity (near $\partial \mathbb{D}$).
- ▶ By a conformal modulus argument, Hölder continuity follows if we can find sufficiently many annuli around each point whose images under (F_n) are not too distorted.

 \blacktriangleright This would be difficult to do for deterministic annuli (A_n) since we would need to control the distortion on the random sets $\Phi_1^{-1}(\mathbb{A}_n)$ and $\Phi_2^{-1}(\mathbb{A}_n)$.

Proof Part 2: Hölder continuity via undistorted annuli

- **•** Instead we consider images under Φ_1 and Φ_2 of deterministic 'half-annuli'. We can estimate the distortion of Φ_1^{-1} and Φ_2^{-1} on such sets which will control their images under (F_n) .
- \triangleright The challenge is to ensure that the images of many half-annuli 'match up' to form a full annulus.

Part 2: Hölder continuity via undistorted annuli

▶ For notational convenience, we map $\partial \mathbb{D}$ periodically onto R and use rectangular half-annuli.

Part 2: Hölder continuity via undistorted annuli

▶ We define a family of half-annuli $A_t(x) \subset \mathbb{H}$ of size comparable to $\rho^t > 0$ and let $A_t(x)$ be their reflections in \mathbb{R} .

- ▶ For each point x in a finely spaced grid of [0, 1], we must find $y \in [0, 1]$ and two increasing sequences $(t_n)_{n\in\mathbb{N}}$ and $(s_n)_{n\in\mathbb{N}}$ such that with high probability, $\Psi_1(A_{t_n}(x))$ matches with $\Psi_2(A_{s_n}(y))$ and F_n has bounded distortion on the resulting annulus.
- ▶ By a crude union bound argument, we may assume $\Psi_1(x) \approx \Psi_2(y)$.
- ▶ The remaining conditions are implied by an intersection of events of the form

$$
\frac{\tau^{(1)}(x+\rho^{t_n}I)}{\tau^{(1)}(x+\rho^{t_n}J)}\leq c,\quad \frac{\tau^{(2)}(y+\rho^{s_n}I)}{\tau^{(2)}(y+\rho^{s_n}J)}\leq c,\quad \frac{\tau^{(1)}(x+[-\rho^{t_n},\rho^{t_n}])}{\tau^{(2)}(y+[-\rho^{s_n},\rho^{s_n}])}\in\left[\frac{1}{C},C\right]
$$

for explicit intervals $I, J \subset [0, 1]$ and constants $c, C > 0$.

Part 3: Decoupling via white noise decomposition

 \blacktriangleright Let W be a white noise for the hyperbolic measure in $\mathbb H$.

▶ If we define $H_{\epsilon}(x) = W(x + H_{\epsilon})$ where

 $\mathcal{H} = \{|x| \leq 1/2, y \geq (2/\pi) \tan(|\pi x|)\}$ and $\mathcal{H}_{\epsilon} = \mathcal{H} \cap \{y \geq \epsilon\}$

then $H := \lim_{\epsilon \to 0} H_{\epsilon}$ is a representation of the Gaussian free field trace.

Part 3: Decoupling via white noise decomposition

 \blacktriangleright Let $\tau_t^{(1)}$ be the analogue of $\tau^{(1)}$ using the white noise restricted to $\{y \leq \rho^t\}.$

▶ For sets $A \subset [x - \rho^t, x + \rho^t]$, we use the approximation

$$
\tau^{(1)}(A) \approx \exp\left(\gamma_1 H_{\rho^t}(x) - \frac{\gamma_1^2}{2} \text{Var}[H_{\rho^t}(x)]\right) \tau_t^{(1)}(A \setminus [x - \rho^{t+3/4}, x + \rho^{t+3/4}])
$$

which will be valid for many values of t with high probability.

Part 3: Decoupling via white noise decomposition

▶ Using this approximation, the first type of event we are interested in becomes

$$
\frac{\tau^{(1)}(x+\rho^t I)}{\tau^{(1)}(x+\rho^t J)} \approx \frac{\rho^{-t}\tau_t^{(1)}(x+\rho^t I \setminus B_{t+3/4}(x))}{\rho^{-t}\tau_t^{(1)}(x+\rho^t J \setminus B_{t+3/4}(x))} \leq c
$$

where $B_t(x) := [x - \rho^t, x + \rho^t].$

 \blacktriangleright These events are independent for $t, t + 1, t + 2, \ldots$.

▶ The measures $\rho^{-t} \tau_t^{(1)}(\rho^t \cdot)$ converge in distribution as $t \to \infty$, yielding large deviation bounds for the number of above events which occur.

Part 4: Random algorithm for matching half-annuli

▶ Using the previous approximation, the second event of interest can be reduced to

$$
\frac{1}{C} \leq \exp(X_{t,s}) \frac{\rho^{-t} \tau^{(1)}_t(B_t(x))}{\rho^{-s} \tau^{(1)}_s(B_s(y))} \leq C
$$

where

$$
X_{t,s} := \gamma_1 H_{\rho^t}^{(1)}(x) - \gamma_2 H_{\rho^s}^{(1)}(y) - \left(1 + \frac{\gamma_1^2}{2}\right) \log(1/\rho) t + \left(1 + \frac{\gamma_2^2}{2}\right) \log(1/\rho) s.
$$

▶ Our goal is to find sequences $(t_n)_{n\in\mathbb{N}}$ and $(s_n)_{n\in\mathbb{N}}$ with increments in [1, 2] (say), such that $|X_{t_n, s_n}| \leq \mathsf{C}'$ with high probability for a sufficiently dense subsequence.

Part 4: Random algorithm for matching half-annuli

 \blacktriangleright The process $X_{t,s}$ can be thought of as a 'two-parameter biased random-walk':

$$
X_{t+u,s+v}-X_{t,s}\sim\mathcal{N}(d_2v-d_1u,\sigma_1^2u+\sigma_2^2v)
$$

independent of $X_{t,s}$ where

$$
d_i := \left(1 + \frac{\gamma_i^2}{2}\right) \log(1/\rho) \quad \text{and} \quad \sigma_i^2 := \gamma_i^2 \log(1/\rho).
$$

- ▶ We therefore choose (t_{n+1}, s_{n+1}) iteratively depending on (t_n, s_n) so that the bias of the increment directs $X_{t,s}$ towards zero.
- ▶ The resulting process is an oscillating random walk, for which we can obtain large deviation estimates for the occupation time of $[-C', C']$.

Why do we require small parameter values?

- ▶ The measures $\tau^{(1)}$ and $\tau^{(2)}$ are well defined for all $\gamma_1, \gamma_2 \in [0, \sqrt{2})$ however our result only holds for $\gamma_1, \gamma_2 \in [0, \epsilon]$ for some $\epsilon > 0$. Why is this?
- ▶ Most statements described above hold for all $\gamma_1, \gamma_2 \in [0, \sqrt{2})$, however two arguments require small values:
	- 1. Matching half-annuli centres via the union bound
	- 2. The different events for controlling half-annuli each hold on a subsequence of (t_n, s_n) of constant density. To guarantee the intersection of these events, the density must be close to one which requires γ_1, γ_2 close to zero.

Open questions

▶ Can this approach be extended to all $\gamma_1, \gamma_2 \in [0, \sqrt{2})$?

- Progress has been made using a related approach [\[4\]](#page-32-4).
- ▶ Can one characterise the welding curves? Are they related to SLE?
	- This would be of particular interest when $\gamma_1 \neq \gamma_2$.

Thank you for listening!
湖湖 谢谢

Further reading

- ▶ An expository account of Liouville quantum gravity and its relation to other probabilistic objects [\[14\]](#page-34-2).
- ▶ Background on quasi-conformal maps [\[7\]](#page-33-5) and the conformal welding problem [\[1\]](#page-32-5).
- ▶ Background on the Gaussian free field and Liouville quantum gravity [\[3\]](#page-32-2).

Bibliography I

- [1] K. Astala, T. Iwaniec, and G. Martin. Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 2009. isbn: 978-0-691-13777-3.
- [2] K. Astala et al. "Random conformal weldings". In: Acta Math. (2011). url: <https://doi.org/10.1007/s11511-012-0069-3>.
- [3] N. Berestycki and E. Powell. "Gaussian free field and Liouville quantum gravity". In: arXiv preprint arXiv:2404.16642 (2024).
- [4] I. Binder and T. Kojar. "Inverse of the Gaussian multiplicative chaos: Lehto welding of Independent Quantum disks". In: arXiv preprint arXiv:2311.18163 (2023).
- [5] G. F. Lawler. "Conformal invariance and 2D statistical physics". In: Bull. Amer. Math. Soc. (N.S.) (2009). URL: <https://doi.org/10.1090/S0273-0979-08-01229-9>.
- [6] G. F. Lawler, O. Schramm, and W. Werner. "Conformal invariance of planar loop-erased random walks and uniform spanning trees". In: The Annals of Probability (2004). URL: <https://doi.org/10.1214/aop/1079021469>.

Bibliography II

- [7] O. Lehto and K. I. Virtanen. Quasiconformal mappings in the plane. Second. Die Grundlehren der mathematischen Wissenschaften, Band 126. Translated from the German by K. W. Lucas. Springer-Verlag, New York-Heidelberg, 1973.
- [8] A. M. Polyakov. "Quantum geometry of bosonic strings". In: Phys. Lett. $B(1981)$. URL: [https://doi](https://doi-org.libproxy.helsinki.fi/10.1016/0370-2693(81)90743-7)[org.libproxy.helsinki.fi/10.1016/0370-2693\(81\)90743-7](https://doi-org.libproxy.helsinki.fi/10.1016/0370-2693(81)90743-7).
- [9] A. M. Polyakov. "Quantum geometry of fermionic strings". In: Phys. Lett. $B(1981)$. URL: [https://doi](https://doi-org.libproxy.helsinki.fi/10.1016/0370-2693(81)90744-9)[org.libproxy.helsinki.fi/10.1016/0370-2693\(81\)90744-9](https://doi-org.libproxy.helsinki.fi/10.1016/0370-2693(81)90744-9).
- $[10]$ E. Powell and A. Sepúlveda. "An elementary approach to quantum length of SLE". In: arXiv preprint arXiv:2403.03902 (2024).
- [11] O. Schramm. "Scaling limits of loop-erased random walks and uniform spanning trees". In: Israel J. Math. (2000). URL: <https://doi.org/10.1007/BF02803524>.
- [12] S. Sheffield. "Conformal weldings of random surfaces: SLE and the quantum gravity zipper". In: Ann. Probab. (2016). URL: <https://doi.org/10.1214/15-AOP1055>.

Bibliography III

- [13] S. Sheffield. "Gaussian free fields for mathematicians". In: Probab. Theory Related Fields (2007). URL: <https://doi.org/10.1007/s00440-006-0050-1>.
- [14] S. Sheffield. "What is a random surface?" In: ICM-International Congress of Mathematicians. Vol. 2. Plenary lectures. EMS Press, Berlin, [2023] ©2023.
- [15] W. Werner and E. Powell. Lecture notes on the Gaussian free field. Cours Spécialisés [Specialized Courses]. Société Mathématique de France, Paris, 2021. ISBN: 978-2-85629-952-4.