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Gaussian fields

Motivation: cosmology

Figure: Fluctuations of the Cosmic Microwave Background Radiation (CMBR)
(Source: Planck 2018).

» Physical theory and evidence confirm that the CMBR is well modelled as a
realisation of a Gaussian field on the sphere [6].
» Deviations from this model provide insight about the early universe.

» Geometric properties of excursion sets can be used to test for such
deviations [7].




Gaussian fields

Motivation: medical imaging
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Figure: Measurements from a PET study of brain activity during a reading task.
(Source: [14]). See [15] for a technical account.




Gaussian fields

Further applications

»> Quantum chaos
It is conjectured that for any Riemannian 2-manifold with ‘chaotic’
dynamics, the high-energy eigenfunctions of the Laplacian are well
modelled by Gaussian random fields [4]. (See [8] for a recent overview.)

» Atmospheric/climate modelling
Time-dependent models of smooth Gaussian fields on the sphere have
recently been used to model global temperatures [5] and air pollution [12].
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Gaussian fields

Basic setting

> Let M be a smooth manifold and f : M — R be a C? Gaussian field with
mean zero and variance one (at each point).

» The distribution of the field is specified by its covariance function
K : M? — [—1,1] defined as

K(x,y) =E[f(x)f(y)]  Vx,y e M.
» We are interested in the geometry of the excursion sets
{F> 0= {xeM|f(x) >}

for £ € R.




Euler characteristic
A rough definition

{f =10}

Figure: A simple excursion set in R? (left) and a triangulation of the same set (right).

1. The Euler characteristic is an integer valued topological invariant of ‘nice’
sets in Euclidean space

2. The Euler characteristic of a planar set is the number of components
minus the number of ‘holes’

3. This coincides with the graphical definition (#Vertices - #Edges +
#Faces) for a triangulation of the set DyUBLIN
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Euler characteristic

Application to Gaussian fields

Figure: Excursion sets for a function f above levels {1 < £ < /3.

1. The Euler characteristic of an excursion set for a ‘nice’ planar function can
be decomposed as

Euler characteristic = #Maxima — #Saddles + #Minima.

2. The expectation of this quantity for a Gaussian field can be calculated DT“‘**
using a generalisation of Kac’s counting formula. U



Euler characteristic

Application to Gaussian fields

Figure: Excursion sets {f > ¢} in black for £ = —1 (left), £ = 0 (middle) and £ =1
(right) where f : R2 — R has covariance K(x,y) = exp(—|x — y[2/2).
For a stationary, planar Gaussian field
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Euler characteristic

Cosmological data
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Figure: The observed Euler characteristic of the CMBR restricted to intensities above
the level v (dots) and the expected value for a Gaussian field (solid curve). Source: [7].
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Euler characteristic
Medical imaging
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Figure: The observed Euler characteristic for PET data (jagged) and the expected
value for a Gaussian field (smooth) at different thresholds. Source: [15].
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Euler characteristic

References

This type of analysis results from a rich interplay between mathematical theory
and applications!
For more details, see
» [14] for a non-technical overview of different applications;
> [1] for theoretical development of the Euler characteristic for Gaussian
fields;
» [9] for a mathematical development of Gaussian fields with applications in
cosmology.




Geometry vs Topology

A functional of a random field is local if it can be represented as an integral of
a pointwise function of the field and its derivatives.

Geometric Functionals

» Typically local.
» Examples:
® Volume of the excursion set
® Boundary length of the excursion
set
® FEuler characteristic of the
excursion set
» Statistics of these functionals are
well understood.

Topological Functionals

» Typically non-local.
» Examples:

® Number of components of the
excursion set

® Betti numbers of the excursion set

® Volume of the unbounded
component of the excursion set

» Occur naturally in applications
[13] but are much less
understood theoretically.

DE‘BUI}E

11/15



The component count

Law of large numbers

> Let f: R > R be a stationary, centred, smooth Gaussian field.

> Given £ € R and R > 0 we let Ngs(¢, R) be the number of connected
components of {f > ¢} N[-R, R].

Theorem (Nazarov-Sodin[10])
If f is ergodic, then there exists c(¢) > 0 such that

lim Nes(6R)

R— o0 (2R)d - C(é)

almost surely and in L.

» |t is straightforward to verify ergodicity using the Fourier transform of the
covariance function.

» The result is extremely general: in particular, there is no requirement of
fast correlation decay.

» The proof shows that the component count is ‘semi-local’: its value on a

macroscopic domain can be well approximated by summing its value on
mesoscopic domains. DU




The component count

Central limit theorem

Assume that f = g * W where W is a Gaussian white noise process on R¢ and
q satisfies some regularity conditions, including

sup |07 q(x)| < c|x| ™"
lal<2

for some ¢ > 0 and 8 > 9d and all x € R,

Theorem (Beliaev-M.-Muirhead|3])
Given { € R, there exists 0°(£) > 0 such that as R — oo

Var[Ngs(4, R)] 2
Teme 70

and
Nes (4, Ré}i[/’l'mw’ R 4, v (0, 5%(0)).
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The component count
Proof of CLT

>

>

The proof adapts a martingale CLT argument from discrete probability
[11].
Let (F.),ez¢ be a ‘lexicographic’ filtration generated by the white noise

W and
s . Nes(é,n) — E[Nes (£ n)]
e (2n)d/2 '

Then S, := E[Ss|F,] defines a ‘lexicographic martingale array’.

A generalisation of the classical martingale CLT states that S, — A(0, 0?)
provided that the martingale differences U,,, satisfy certain moment
bounds and 3" 4 U, — o in L.

The latter property follows from an elegant ergodic argument due to
Penrose [11].

The moments bounds follow from relating U,,, to the change in the
component count when the white noise W is resampled on a cube of unit
length centred at v.
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Open questions

» How are the statistics of topological functionals affected by long-range
dependence?

» Can a similar theory be developed for non-Gaussian (e.g. shot-noise)
fields?

» There are many related open questions regarding the percolation
properties of smooth Gaussian fields [2].

Thank you for listening!
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