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Gaussian fields
Motivation: medical imaging

Figure: Measurements from a PET study of brain activity during a reading task.
(Source: [14]). See [15] for a technical account.
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Gaussian fields
Basic setting

▶ Let M be a smooth manifold and f : M → R be a C 2 Gaussian field with
mean zero and variance one (at each point).

▶ The distribution of the field is specified by its covariance function
K : M2 → [−1, 1] defined as

K(x , y) = E[f (x)f (y)] ∀x , y ∈ M.

▶ We are interested in the geometry of the excursion sets

{f ≥ ℓ} := {x ∈ M | f (x) ≥ ℓ}

for ℓ ∈ R.
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Euler characteristic
A rough definition

Figure: The Euler characteristics of a sliotar (solid ball), a tennis ball and a coffee cup
are 1, 2 and 0 respectively.

1. The Euler characteristic is an integer valued topological invariant of ‘nice’
sets in Euclidean space.

2. The Euler characteristic of a set in R3 is the number of components minus
the number of ‘handles’ plus the number of ‘holes’.

3. For large ℓ, if the excursion set {f ≥ ℓ} is non-empty then it is most likely
a single simply connected component, hence

E[EC[{f ≥ ℓ}]] ≈ P
(
sup
M

f ≥ ℓ

)
.
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Euler characteristic
Application to excursion sets

{f ≥ ℓ1} {f ≥ ℓ2} {f ≥ ℓ3}

Figure: Excursion sets for a function f above levels ℓ1 < ℓ2 < ℓ3.

The Euler characteristic of an excursion set for a ‘nice’ function f : M → R can
be decomposed as

EC[{f ≥ ℓ}] =
d∑

i=0

(−1)ini + Boundary terms

where

ni = #{x ∈ M : f (x) ≥ ℓ, ∇f (x) = 0, index∇2f (x) = d − i}.
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Euler characteristic
Application to Gaussian fields

▶ The expected number of zeros of a one-dimensional random function
h : R → R can be computed by the Kac-Rice formula:

E[#{t ∈ [0,T ] : h(t) = 0}] = E
[∫ T

0

lim
ϵ↘0

1

2ϵ
|h′(t)|1|h(t)|≤ϵ dt

]
.

▶ For f : Rd → R stationary, Gaussian

E

[∑
i

(−1)ini

]
= (−1)d

∫
M

E
[
det∇2f (x)1f (x)≥ℓ

∣∣∣∇f (x) = 0
]
p∇f (x)(0) dx

▶ In particular, when M = [−R,R]3

E[EC[{f ≥ ℓ} ∩M]] =

√
− det∇2K(0)

(2π)2
(2R)3(ℓ2 − 1)e−ℓ2/2 + O(R2)
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Euler characteristic
Medical imaging

Figure: The observed Euler characteristic for PET data (jagged) and the expected
value for a Gaussian field (smooth) at different thresholds. Source: [15].

6 / 21



Euler characteristic
References

For more details, see

▶ [14] for a non-technical overview of different applications;

▶ [1] for theoretical development of the Euler characteristic for Gaussian
fields;

▶ [8] for a mathematical development of Gaussian fields with applications in
cosmology.
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Local functionals
A rough definition

▶ A functional of a random field is described as local (or geometric) if it is
an integral of a pointwise function of the field and its derivatives.

▶ Examples:
• Volume of the excursion set
• Boundary length of the excursion set
• Euler characteristic of the excursion set

▶ We will consider functionals of the form

FR,ℓ(f ) =

∫
[−R,R]d

φℓ(f (x)) dx

for some φℓ : R → R (e.g. φℓ(y) = 1y≥ℓ) and stationary f : Rd → R.
▶ By Fubini’s theorem,

E[FR,ℓ(f )] = (2R)dE[φℓ(Z)]

where Z ∼ N (0, 1) for all R > 0.
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Second order properties
Hermite polynomials

The variance and limiting distribution of local functionals can be studied using
Hermite polynomials.
▶ The Hermite polynomials (Hn)n≥0 can be defined inductively by setting

H0(x) = 1 and Hn+1(x) = xHn(x)− H ′
n(x)

which yields

H1(x) = x , H2(x) = x2 − 1, H3(x) = x3 − 3x .

▶ Hermite polynomials are orthogonal with respect to the Gaussian measure:
if X ,Y are jointly normal with mean zero and variance one then

E[Hn(X )Hm(Y )] =

{
n!E[XY ]n if n = m

0 if n ̸= m.

▶ If X ∼ N (0, 1) and E[φ2(X )] < ∞ then

φ(X ) =
∞∑
n=0

anHn(X )

where
∑

n a
2
nn! < ∞.
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Second order properties
Wiener chaos expansion

▶ Considering the expansion φℓ =
∑

n an(ℓ)Hn yields the Wiener chaos
expansion

FR,ℓ(f ) =
∞∑
n=0

an(ℓ)

∫
[−R,R]d

Hn(f (x)) dx =:
∞∑
n=0

an(ℓ)Qn.

▶ The variance of FR,ℓ can be computed by considering

Cov [Qn,Qm] =

∫∫
[−R,R]2d

Cov[Hn(f (x)),Hm(f (y))] dxdy

=

{
n!

∫∫
[−R,R]2d

K(x − y)n dxdy if n = m ̸= 0,

0 otherwise..

▶ The overall variance therefore depends on the integrability/decay of K .
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Second order properties
Covariance function examples

Three general classes of covariance function are considered in the literature:

1. K is integrable
• Example: the Bargmann-Fock field is the scaling limit of random

homogeneous polynomials [2] and has covariance

K(x − y) = exp

(
−
∥x − y∥2

2

)
.

2. K is regularly varying at infinity with index α ∈ (0, d)
• Example: The Cauchy field has covariance

K(x − y) = (1 + |x − y |2)−α/2.

3. K is oscillating and slowly decaying
• Example: The Random Plane Wave is the two-dimensional field with

covariance

K(x) = J0(|x |) ∼
√

2

π
cos(|x | − π/4)|x |−1/2 as |x | → ∞.

It models high energy Laplace eigenfunctions in quantum chaos [4].
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Second order properties
Case 1: Integrable covariance

Recall:

FR,ℓ(f ) =
∞∑
n=0

an(ℓ)Qn, Var[Qn] = n!

∫
[−R,R]2d

K(x − y)n dxdy

▶ If K is integrable then for n ̸= 0

Var[Qn] ∼
(
n!

∫
Rd

K(x)n dx

)
Rd

so each chaos has variance of order Rd .

▶ Moreover for each ℓ

Var[FR,ℓ] ∼ Rd as R → ∞.

▶ (Breuer-Major theorem.) If f is isotropic, then FR,ℓ satisfies a central
limit theorem as R → ∞.
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Second order properties
Case 2: Regularly varying covariance

▶ If K is regularly varying at infinity with index α ∈ (0, d) then for n ̸= 0

Var[Qn] ∼ cK ,nR
max{2d−nα,d}.

▶ At a ‘generic’ level ℓ, a1(ℓ) ̸= 0 so the first chaos carries all variance
asymptotically

FR,ℓ(f ) ∼ a1(ℓ)

∫
[−R,R]d

f (x) dx

and so a central limit theorem holds with variance of order R2d−α.

▶ At some ‘anomalous’ levels, a1(ℓ) = 0 so FR,ℓ has lower order variance.

▶ The limiting distribution may be Gaussian or non-Gaussian depending on
which chaos(es) dominate!
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Second order properties
Case 3: Oscillating, slowly decaying covariance

▶ Results in this setting mostly consider specific fields and functionals.

▶ Compared to the regularly varying case, the first chaos typically has lower
order variance due to oscillations of K . Hence when a2(ℓ) ̸= 0 the second
chaos dominates

Var[FR,ℓ(f )] ∼ a2(ℓ)

∫∫
[−R,R]2d

K 2(x − y) dxdy .

▶ At anomalous levels (i.e. a2(ℓ) ̸= 0) the fourth chaos typically dominates,
resulting in a lower order of variance.

▶ Central limit theorems are known in many cases, although degenerate
behaviour is also possible [7].
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Local functionals
Limit theorem references

▶ The classical Breuer-Major theorem established a CLT for local functionals
of fields with fast correlation decay [5]. Modern proofs of this result
typically use the Malliavin-Stein method [11].

▶ Non-CLTs were established for fields with slow (regularly varying)
correlation decay [6] using multiple Wiener-Itô integrals.

▶ More recently, a general CLT has been proven for some fields with slowly
decaying oscillating correlations [7].
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Non-local functionals

▶ Many natural topological functionals of a Gaussian field are non-local.
▶ Examples:

• Number of connected components of the excursion set
• Betti numbers of the excursion set
• Volume of the unbounded component of the excursion set

▶ These functionals are of interest from both applied [13] and theoretical
perspectives [2], but are much harder to study!
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The component count
Law of large numbers

▶ Let f : Rd → R be a stationary, centred, smooth Gaussian field.

▶ Given ℓ ∈ R and R > 0 we let N(ℓ,R) be the number of connected
components of {f ≥ ℓ} ∩ [−R,R]d .

Theorem (Nazarov-Sodin[10])

If f is ergodic, then there exists c(ℓ) ≥ 0 such that

lim
R→∞

N(ℓ,R)

(2R)d
= c(ℓ)

almost surely and in L1.

▶ It is straightforward to verify ergodicity using the Fourier transform of the
covariance function.

▶ The result is extremely general: in particular, there is no requirement of
fast correlation decay.

▶ The proof shows that the component count is ‘semi-local’: its value on a
macroscopic domain can be well approximated by summing its value on
mesoscopic domains.
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The component count
Law of large numbers: Proof

▶ Let ΛR = [−R,R]d . Let Nx(R) and Nx(R) denote the number of
components of {f ≥ ℓ} which are inside or intersect x + ΛR respectively.

▶ (Integral geometric sandwich) For 0 < s < R∫
ΛR−s

Nx(s)

(2s)d
dx ≤ N0(R) ≤

∫
ΛR+s

Nx(s)

(2s)d
dx .

▶ Applying the ergodic theorem as R → ∞

lim sup
R→∞

∣∣∣∣N0(R)

(2R)d
− 1

(2R)d

∫
ΛR

Nx(s)

(2s)d
dx

∣∣∣∣ ≤ E[N0(s)− N0(s)]

(2s)d
.

▶ N0(s)− N0(s) is the number of components intersecting ∂Λs which has
expectation O(sd−1) as s → ∞.

▶ These observations imply that (2R)−dN0(R) is Cauchy almost surely and
in L1.
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The component count
Central limit theorem

Assume that f = q ∗W where W is a Gaussian white noise process on Rd and
q satisfies some regularity conditions, including

sup
|α|≤2

|∂αq(x)| ≤ c|x |−β

for some c > 0 and β > 9d and all x ∈ Rd .

Theorem (Beliaev-M.-Muirhead[3])

Given ℓ ∈ R, there exists σ2(ℓ) > 0 such that as R → ∞

Var[N(ℓ,R)]

(2R)d
→ σ2(ℓ)

and
N(ℓ,R)− E[N(ℓ,R)]

(2R)d/2
d−→ N (0, σ2(ℓ)).

▶ Matches results for local functionals when the covariance function is
integrable.

▶ Method extends to other non-local functionals [9].
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The component count
Proof of CLT

▶ The proof adapts a martingale CLT argument from discrete probability
[12].

▶ Let (Fv )v∈Zd be a ‘lexicographic’ filtration generated by the white noise
W and

Sn :=
N(ℓ, n)− E[N(ℓ, n)]

(2n)d/2
.

Then Sn,v := E[Sn|Fv ] defines a ‘lexicographic martingale array’.

▶ A generalisation of the classical martingale CLT states that Sn → N (0, σ2)
provided that the martingale differences Un,v satisfy certain moment
bounds and

∑
v∈Zd U

2
n,v → σ2 in L1.

▶ The latter property follows from an elegant ergodic argument due to
Penrose [12].

▶ The moments bounds follow from relating Un,v to the change in the
component count when the white noise W is resampled on a cube of unit
length centred at v .
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Summary

Open questions:
▶ How is the component count affected by long-range dependence?

• Do anomalous levels exist?
• Do central/non-central limit theorems hold?

▶ What happens if we relax the assumptions of stationarity, Gaussianity or
smoothness?

Thank you for listening!
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