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For a smooth stationary Gaussian field f on R
d and level � ∈ R, we

consider the number of connected components of the excursion set {f ≥ �}
(or level set {f = �}) contained in large domains. The mean of this quantity
is known to scale like the volume of the domain under general assumptions
on the field. We prove that, assuming sufficient decay of correlations (e.g.,
the Bargmann–Fock field), a central limit theorem holds with volume-order
scaling. Previously, such a result had only been established for “additive”
geometric functionals of the excursion/level sets (e.g., the volume or Euler
characteristic) using Hermite expansions. Our approach, based on a martin-
gale analysis, is more robust and can be generalised to a wider class of topo-
logical functionals. A major ingredient in the proof is a third moment bound
on critical points, which is of independent interest.

1. Introduction. Let f : Rd → R be a smooth stationary centred Gaussian field. We
consider the geometry of the (upper)-excursion sets and level sets, defined respectively as

{f ≥ �} := {
x ∈ R

d : f (x) ≥ �
}

and {f = �} := {
x ∈ R

d : f (x) = �
}
, � ∈ R.

In particular, we are interested in the number of connected components of these sets contained
in large domains (the ‘component count’).

The geometry of Gaussian excursion/level sets is a well-studied topic, with applications
to a range of subjects including cosmology [6, 41], medical imaging [49] and quantum
chaos [26]. The component count is of high importance to these applications; to give an
example, physical theories predict that the Cosmic Microwave Background Radiation can
be modelled as a realisation of an isotropic Gaussian field on the sphere, and in [41] this
prediction was tested statistically using numerical simulations of the component count of a
Gaussian field.

A second motivation to study the component count comes from recent progress in un-
derstanding the connectivity of Gaussian field excursion sets (see, e.g., [7, 34, 35, 44] for a
selection of recent results, and more generally [22] for background on classical percolation
theory). The component count is significant for this study: in classical percolation, smooth-
ness properties of the mean number of open clusters (which corresponds to the excursion
set count in the Gaussian setting) are related to the uniqueness of infinite connected compo-
nents [2], and broadly analogous results have recently been proven for Gaussian fields [8].

In dimension d = 1, the component count reduces to the number of level crossings, which
is a classical topic in probability theory [29].
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1.1. Existing results on the component count. Recall that f is a smooth stationary cen-
tred Gaussian field on R

d , and let K(x) = E[f (0)f (x)] be its covariance kernel. For R > 0
and � ∈ R, we denote by NES(R, �) and NLS(R, �), respectively, the number of connected
components of {f ≥ �} and {f = �}, which are contained in the cube �R = [−R,R]d (i.e.,
which intersect this set but not its boundary). The precise choice of domain �R , and the
choice to exclude boundary components, are mainly for concreteness, and could be modified
with minimal change to the results or proof. For simplicity, we shall often write N�(R, �),
� ∈ {ES,LS}, to refer collectively to these component counts.

We are interested in the asymptotics of N�(R, �) as R → ∞. The first-order convergence
(i.e., law of large numbers) was established by Nazarov and Sodin [38]: under very mild
conditions on the field, as R → ∞,

(1.1)
N�(R, �)

Vol(�R)
→ μ in L1 and almost surely,

for a constant μ = μ�(�) > 0 which depends on the law of f . Although the result in [38]
was stated only for the nodal set (i.e., the level set at � = 0), the proof goes through verbatim
for excursion/level sets at all levels (see, e.g., [9]). The law of large numbers has since been
extended to other quantities related to the component count [12, 32, 45, 48].

A natural next step is to investigate the second-order properties of N�(R, �), which are
expected to depend strongly on the covariance structure of the field. Here, we focus on the
short-range correlated case in which K ∈ L1(Rd); an important example is the Bargmann–
Fock field with K(x) = e−|x|2/2 (see [7] for background and motivation). In this case, it is
expected that N�(R, �) satisfies a central limit theorem (CLT) with volume-order scaling
� Rd . This has previously been established for various “additive” geometric functionals of
the excursion/level sets (for instance, their volume or Euler characteristic [19, 28, 30, 36,
37]), and it is also known in the case of an i.i.d. Gaussian field on Z

d [14, 40, 50] (where the
component count is equivalent to the number of clusters in classical site percolation).

Thus far, progress on understanding second-order properties has been limited to bounds
on the variance, which are mostly suboptimal and apply only to planar fields.

In [39], Nazarov and Sodin proved a polynomial lower bound

Var
[
N�(R, �)

]≥ cRη

valid for general planar fields with polynomially decaying correlations (to be more precise,
they considered families (fn)n≥1 of Gaussian fields defined on the sphere S2, which converge
locally, and only considered the nodal set, but we expect the proof extends, up to boundary
effects, to the Euclidean setting we consider here). The exponent η > 0 was not quantified
but is small.

In [10], sharper results were proven for planar fields under stronger conditions. More pre-
cisely, if f is short-range correlated, and if

∫
K(x)dx �= 0 and d

d�
μ�(�) �= 0 (recall that μ�(�)

is the limiting constant in (1.1)), then

Var
[
N�(R, �)

]≥ cR2.

Further, in [8] the condition d
d�

μ�(�) �= 0 was shown to hold for a large range of levels (in-
cluding the zero level when � = ES).

Turning to upper bounds, it is straightforward to establish that (in all dimensions)

(1.2) Var
[
N�(R, �)

]≤ cR2d

using a comparison with critical points. More precisely, since each excursion (resp., level)
set component contains (resp., surrounds) at least one critical point, the component count in
a compact domain is bounded by the number of critical points in the domain. Since the latter



884 D. BELIAEV, M. MCAULEY AND S. MUIRHEAD

quantity has a second moment of order � R2d [17, 18], we deduce (1.2). Note that this bound
is only expected to be attained for very degenerate Gaussian fields (see [9, 10] for examples).

Various concentration bounds have also been established for N�(R, �) [11, 42, 43], but
these do not lead to improved bounds on the variance in the short-range correlated case.
Related questions have also been studied in the ‘sparse’ regime �R → ∞ as R → ∞ [46].

1.2. CLT for the component count. Our main result establishes a CLT for N�(R, �) with
volume-order scaling, assuming sufficient decay of correlations (e.g., the Bargmann–Fock
field).

We assume that f has a spatial moving average representation

(1.3) f = q ∗ W,

where q ∈ L2(Rd) is Hermitian (i.e., q(x) = q(−x)), W is the white noise on R
d , and ∗

denotes convolution. This representation always exists in the short-range correlated case K ∈
L1(Rd), since one can choose q = F−1[√F[K]], where F[·] denotes the Fourier transform.
The covariance kernel of f is K = q ∗ q .

We impose the following assumptions on the kernel q .

ASSUMPTION 1.1.

1. (Nondegeneracy) q �= 0.
2. (Smoothness) ∂αq ∈ L1(Rd) ∩ C(Rd) for every |α| ≤ 4 and K = q ∗ q ∈ C10.
3. (Decay) There exist β > 9d and c ≥ 1 such that, for all |x| ≥ 1,

max|α|≤2

∣∣∂αq(x)
∣∣≤ c|x|−β.

Since we assume q ∈ L1(Rd), for positive q the decay rates of q and K = q ∗ q are com-
parable up to constants. In general, K decays at least as quickly as q , but due to cancellations
it could decay more quickly. Hence, roughly speaking, Assumption 1.1 demands that corre-
lations decay polynomially with exponent β > 9d . In particular, the Bargmann–Fock field
satisfies Assumption 1.1. See Remark 3.12 for an explanation of how the condition β > 9d

arises, and how it can be weakened.
Assumption 1.1 implies that f is C4-smooth almost surely (this follows from Kol-

mogorov’s theorem, see [38], Appendix A). This degree of smoothness may seem strong
in comparison to other works, for example, [10, 39]. However, a key novelty of our approach
is that we exploit a third moment bound on critical points (see Theorem 1.6), whose proof
requires fourth-order smoothness.

Most results for level sets of random fields require some nondegeneracy of the field; it is
usually required that the joint distribution of the field and some of its derivatives at a point
is nondegenerate. In particular, this is needed for the law of large numbers in (1.1). Under
our assumptions the spectral measure has an open set in its support, which is a sufficient
condition for nondegeneracy (see Appendix A).

Our main result is the following.

THEOREM 1.2 (CLT for the component count). Suppose Assumption 1.1 holds. Let � ∈R

and � ∈ {ES,LS}. Then there exists σ = σ�(�) ≥ 0 such that, as R → ∞,

Var[N�(R, �)]
Vol(�R)

→ σ 2 and
N�(R, �) −E[N�(R, �)]√

Vol(�R)

d−→ σZ,

where Z is a standard normal random variable.
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We prove Theorem 1.2 by generalising an argument due to Penrose [40]; the rough idea is
to obtain a martingale representation for the component count by resampling portions of the
white noise appearing in (1.3), and apply a martingale CLT. Penrose developed this argument
to study the number of clusters in classical percolation (among other applications). In our
setting, there are additional technical obstacles to overcome, since (i) resampling the white
noise in a given region affects the values of the field, and a priori also the topology of the
components, at arbitrarily large distances, and (ii) the component count has delicate stability
properties in continuous space.

It is interesting to compare this approach to the strategy used to prove all previously known
CLTs for ‘additive’ geometric functionals of Gaussian field excursion sets (such as the vol-
ume or Euler characteristic) [19, 28, 30, 36, 37], which relied on expansions over Hermite
polynomials. It appears very challenging to extend the ‘Hermite expansion’ method to nonad-
ditive functionals such as the component count; by contrast, we believe that our approach ex-
tends naturally to a wider class of topological functionals, additive or otherwise. For instance,
one could consider the number of components with a given diffeomorphism type [45].

On the other hand, the Hermite expansion approach is ‘robust’ in a different sense: it can be
successfully applied to some strongly correlated fields, which are excluded from our results.
It remains a significant ongoing challenge to understand nonadditive geometric functionals
of strongly correlated fields.

1.3. Positivity of the limiting variance. The CLT stated in Theorem 1.2 does not guaran-
tee that the limiting variance σ 2 = σ 2

� (�) is strictly positive, and if σ = 0 the result implies
only that Var[N�(R, �)] = o(Rd).

Our next result confirms that σ > 0 under a mild additional condition on the field.

THEOREM 1.3. Suppose that Assumption 1.1 holds, and in addition that
∫

q(x) dx > 0.
Let � ∈ {ES,LS} and � ∈ R. Then

σ�(�) > 0,

where σ�(�) is the constant from Theorem 1.2.

In particular, for the Bargmann–Fock field this result confirms that Var[N�(R, �)] is of
volume order for all levels, whereas previously this was only known (in the planar case) for
levels such that d

d�
μ�(�) �= 0 [10], which is necessarily violated at (at least) one level.

To prove Theorem 1.3, we exploit a (semi)-explicit representation for σ (see (3.34)) that
is a by-product of the proof of the CLT. While the ‘Hermite expansion’ approach for additive
functionals also gives a (semi)-explicit representation for the limiting variance, it has proved
difficult to verify its positivity in practice. A representative example is [19] on the Euler
characteristic, where the limiting variance is only shown to be positive for levels � such that
Hd(�) �= 0, where Hd is the degree-d Hermite polynomial (which has d zeros). Since our
approach also works for additive functionals such as the Euler characteristic, we believe it
gives a more tractable route to establishing strict positivity at all levels.

REMARK 1.4. The condition that
∫

q(x) dx > 0 is equivalent to either
∫

K(x)dx �= 0 or
ρ(0) > 0, where ρ = F−1[K] is the spectral density of the field. While we do not expect this
condition to be necessary, it is quite natural given that our proof generates fluctuations in the
component count by exploiting level shifts. Indeed, this is precisely the condition under which
level shifts can be well approximated in the Cameron–Martin space of the field. An identical
condition appeared in our previous study of fluctuations of the component count [10].
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1.4. Third moment bounds. A major ingredient in the proof of Theorem 1.2 is a third
moment bound on the number of critical points of the field inside a compact domain; this
extends existing results in dimension d = 1 [13, 15, 16], and also second moment bounds
valid in all dimensions [17, 18]. See also [33] for related results on third moment bounds
for zeros of Gaussian vector fields, although these do not apply to critical points. Since we
believe this bound may be useful in other applications, we highlight it here.

We establish this result under much more general conditions than Theorem 1.2, and in
particular we do not require any assumption on the decay of K . Recall that the spectral
measure of f is the finite measure μ on R

d such that K = F[μ].

ASSUMPTION 1.5. f is C4-smooth and the support of μ contains an open set.

The condition on the support of μ is easily verified for short-range correlated fields; in
particular, Assumption 1.1 implies Assumption 1.5 (see Lemma A.1 for details).

THEOREM 1.6 (Third moment bound for critical points). Let τ > 0 and let p ∈ C4(Rd)

be a deterministic function such that ‖p‖C4(Rd ) ≤ τ . Suppose Assumption 1.5 holds and let
Nc(R) denote the number of critical points of f + p contained in �R . Then there exists a
c > 0 (depending only on f and τ ) such that, for R ≥ 1,

E
[
Nc(R)3]≤ cR3d .

We allow for the addition of the smooth function p primarily because it is needed in the
proof of Theorem 1.3, although we believe it to be of independent interest (see [16] for similar
results in the d = 1 case). The dependence on ‖p‖C4(Rd ) can be quantified; see Remark 4.3.

Since N�(R, �) ≤ Nc(R), an immediate consequence of Theorem 1.6 is a third moment
bound on the component count:

COROLLARY 1.7 (Third moment bound for the component count). Suppose that As-
sumption 1.5 holds, then there exists a c > 0 such that, for � ∈ {ES,LS}, � ∈ R and R ≥ 1,

E
[
N�(R, �)3]≤ cR3d .

REMARK 1.8. The assumption that μ has an open set in its support can be weakened
considerably; we use it only to guarantee that the following Gaussian vectors are nondegen-
erate for all distinct x, y ∈ R

d \ {0} and linearly independent vectors v,w ∈ S
d−1:

1. (∇f (0),∇f (x),∇f (y));
2. (∇f (0),∇2f (0),∇f (x));
3. (∇f (0), ∂v∇f (0), ∂2

v∇f (0));
4. (∇f (0),∇2f (0), ∂2

v ∂wf (0), ∂v∂
2
wf (0)).

We expect that these are nondegenerate for a much wider class of stationary Gaussian fields
(e.g., monochromatic random waves, for which μ is supported on the sphere S

d−1), which
would expand the scope of Theorem 1.6.

1.5. Outline of the paper. In Section 2, we undertake a preliminary study of the stability
properties of the component count. In Section 3, we establish the CLT stated in Theorem 1.2
and also the positivity of the limiting variance in Theorem 1.3. In Section 4, we study the
density of critical points, and in particular prove the third moment bound in Theorem 1.6.
Finally, in the Appendix we collect some technical statements about Gaussian fields and
prove a topological lemma, which was used in Section 2.
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FIG. 1. An example of a stratified domain in d = 2; the dashed lines show the boundary of R while the shaded
region, thick lines and circles show the stratification of a domain D.

2. Stability of the component count. In this section, we study the stability of the com-
ponent count under perturbations. The resulting estimates will play an important role in the
proof of the CLT in Section 3.

2.1. Stratified domains and critical points. A box is any set of the form R = [a1, b1] ×
· · · × [ad, bd ] ⊂ R

d , for finite ai ≤ bi . Rather than work in the fullest possible generality, we
restrict our attention to the stability properties of sets D ⊂ R

d of the form D = D(R;V ) =
R∩ (

⋃
v∈V Bv), where R is a box, V ⊂ Z

d is a nonempty finite subset and Bv = v + [0,1]d
denotes the translated unit cube. We refer to such sets D as domains, although we emphasise
that they need not be connected. In particular, �R = [−R,R]d is of this form.

We may view any such domain D as a stratified set as follows. Recall that every box has a
canonical stratification, that is, a partition into the finite collection F = (Fi) of its open faces
of all dimensions 0 ≤ m ≤ d . For each cube Bv , v ∈ Z

d , we denote by FR;v the canonical
stratification of R∩Bv . Then FR;V =⋃

v∈V FR;v defines a partition of D = D(R;V ), which
we refer to as its stratification.

A stratified domain will be any D = D(R;V ) equipped with the stratification F =FR;V .
We will occasionally need to distinguish strata of dimension m = 0 (i.e., the vertices of
R∩ Bv , v ∈ Z

d ), which we denote by F0 ⊂ F . Note that, for any stratified domain D and any
v ∈ Z

d , the restriction D∩Bv may also be considered as a stratified domain with stratification
FR;v . See Figure 1 for an example of a stratified domain in d = 2.

Let D be a stratified domain and let U be a compact set, which contains an open neigh-
bourhood of D. For x ∈ D and g ∈ C1(U), ∇F g(x) denotes the derivative of g restricted to
the unique stratum F containing x. A (stratified) critical point of g is a point x ∈ F such that
∇F g(x) = 0. The level of this critical point is the value g(x). By convention, all x belonging
to strata of dimension m = 0 are considered critical points. The number of stratified critical
points is denoted by Nc(D,g).

2.2. Stability of the component count. We next study the stability of the component count
on stratified domains under small perturbations. In the following section, we will apply these
estimates to Gaussian fields.

Extending our previous notation, for a function g ∈ C1(U) we let N�(D,g, �) denote the
component count of g at level � inside D, that is, the number of connected components of
{g ≥ �} (if � = ES) or {g = �} (if � = LS) which intersect D but not its boundary.

For a pair of functions (g,p) ∈ C1(U)×C1(U), we say that (g,p) is stable (on D at level
�) if the following holds (and unstable otherwise):

• For every x ∈ F ∈F \F0, either

(2.1)
∣∣g(x) − �

∣∣≥ 2
∣∣p(x)

∣∣ or
∣∣∇F g(x)

∣∣≥ 2
∣∣∇F p(x)

∣∣.
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• For every x ∈ F ∈F0, ∣∣g(x) − �
∣∣≥ 2

∣∣p(x)
∣∣.

This notion of stability implies that the component count is unchanged under perturbation:

LEMMA 2.1. Let g,p ∈ C2(U). Then if (g,p) is stable (on D at level �),

N�(D,g, �) = N�(D,g + p,�).

The proof of this result is given in Appendix B. To explain the intuition, consider the
interpolation g + tp for t ∈ [0,1]. The pair (g,p) being stable implies that there are no values
of t at which g + tp has a critical point at level �. In that case, the level sets {g + tp = �}
deform continuously as t varies, and the component count does not change. This argument
also applies to excursion sets since these have level sets as their boundaries.

A consequence is that we can bound the change in the component count under perturbation
by the total number of stratified critical points in unstable cubes.

LEMMA 2.2. Let g,p ∈ C2(U). Then∣∣N�(D,g, �) − N�(D,g + p,�)
∣∣≤ ∑

v∈U

(
Nc(D ∩ Bv,g) + Nc(D ∩ Bv,g + p)

)
,

where

U := {
v ∈ V : (g,p) is unstable on D ∩ Bv at level �

}
.

PROOF. Define D′ = D ∩ (
⋃

v∈U Bv). Each excursion/level component inside D is either
contained in D \ D′ or else intersects D′. The number of components intersecting D′ is
dominated by the number of stratified critical points in D′, and hence∣∣N�(D,g, �) − N�

(
D \ D′, g, �

)∣∣≤ Nc

(
D′, g

)≤ ∑
v∈U

Nc(D ∩ Bv,g).

The same equation holds if g is replaced by g + p. By Lemma 2.1, we know that

N�

(
D \ D′, g, �

)= N�

(
D \ D′, g + p,�

)
.

Combining these observations using the triangle inequality proves the result. �

REMARK 2.3. One might wonder why we do not simply define (g,p) to be stable if
the component counts of g and g + p are the same. The advantage of our definition is its
additivity: if D1 and D2 are stratified domains and (g,p) is stable on both D1 and D2, then
(g,p) is also stable on D1 ∪ D2. This is not true in general for stability in the sense of the
component count.

2.3. Application to Gaussian fields. We now give a quantitative estimate of stability
when a C2-smooth stationary Gaussian field is perturbed by a deterministic C1 function,
or more generally, a C1-smooth Gaussian field, not necessarily independent of f .

LEMMA 2.4. Let f be a stationary C2-smooth Gaussian field such that (f (0),∇f (0))

is nondegenerate. Let v ∈ Z
d , let D be a stratified domain, which is a subset of Bv and let U

be a compact set, which contains an open neighbourhood of D. Then for every ε > 0 there is
a cε > 0, independent of D, such that:
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1. For all � ∈ R and every p ∈ C1(U),

P
(
(f,p) is unstable (on D at level �)

)≤ cε‖p‖1−ε

C1(U)
.

2. For all � ∈ R and every C1-smooth Gaussian field p on U ,

P
(
(f,p) is unstable (on D at level �)

)≤ cε inf
τ>M1+c

√
M2

(
τ 1−ε + e

− (τ−M1−c
√

M2)2

2M2
)
,

where c > 0 depends only on U ,

M1 = ‖Ep‖C1(U) and M2 = ∥∥Cov[p]∥∥U,1,1 = sup
x,y∈U

sup
|α|,|γ |≤1

∣∣∂α
x ∂γ

y Cov
[
p(x),p(y)

]∣∣.
PROOF. By the definition of stability and the union bound, for any τ ≥ 0, the probability

that (f,p) is unstable is bounded above by∑
F∈F

P

(
inf
x∈F

max
{∣∣f (x) − �

∣∣, ∣∣∇F f (x)
∣∣}< 2τ

)
+ P

(
sup
x∈F

max
{∣∣p(x)

∣∣, ∣∣∇F p(x)
∣∣}> τ

)
(2.2)

(ignoring the ∇F terms if F ∈ F0). Since we assume that D ⊆ Bv , by stationarity and mono-
tonicity it suffices to control the terms in (2.2) in the case that D = B0.

The first term in (2.2) can be bounded by a quantitative version of Bulinskaya’s lemma.
Specifically [38], Lemma 7, states that, for any ε ∈ (0,1), there exists cε > 0 such that, for
all τ > 0,

(2.3) P

(
inf
x∈F

max
{∣∣f (x) − �

∣∣, ∣∣∇F f (x)
∣∣}< 2τ

)
≤ cετ

1−ε.

We note that the exponent 1 − ε is not given in the statement of [38], Lemma 7, but follows
immediately from the final inequality in its proof. Then the first statement of the lemma
follows by setting τ = ‖p‖C1(U) in (2.2).

For the second statement, we need to bound the second term in (2.2). First, let us assume
that p is centred. For each stratum F ∈ F, we define

‖p‖F,1 = sup
x∈F

sup
|α|≤1

∣∣∂αp|F (x)
∣∣ and σ 2

F = sup
x∈F

sup
|α|≤1

Var
[
∂αp|F (x)

]
.

By the Borell–TIS inequality [1], Theorem 2.1.1, for any τ ≥ E[‖p‖F,1],
(2.4) P

(‖p‖F,1 > τ
)≤ e−(τ−E[‖p‖F,1])2/(2σ 2

F ).

By the quantified Kolmogorov’s theorem [38], Section A.9,

E
[‖p‖F,1

]≤ c
√

M2,

where c > 0 depends only on U . Since we also have

σ 2
F = sup

x∈F

sup
|α|≤1

∣∣∂α
x ∂α

y Cov
[
p(x),p(y)

]|y=x

∣∣≤ M2,

combining (2.3) and (2.4) gives the second statement.
In the case that p is not centred, for all τ > 0,

P

(
sup
x∈F

max
{∣∣p(x)

∣∣, ∣∣∇F p(x)
∣∣}> τ

)
≤ P

(
sup
x∈F

max
{∣∣p(x) −E

[
p(x)

]∣∣, ∣∣∇F p(x) −E
[∇F p(x)

]∣∣}> τ − ‖Ep‖C1(U)

)
.

Therefore, the above arguments are valid on replacing τ with τ − ‖Ep‖C1(U). �
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3. Proof of the CLT. In this section, we give the proof of the CLT in Theorem 1.2, and
also of the positivity of the limiting variance in Theorem 1.3.

3.1. Martingale CLT for lexicographic arrays. The basis of the proof of Theorem 1.2 is
a classical CLT for martingale arrays which we now describe. This generalises the approach
of Penrose in [40].

We say that a collection of random variables Sn,i and σ -algebras Fn,i , indexed by n ∈ N

and i = 1, . . . , kn, form a martingale array if for all n and i,

E[Sn,i+1|Fn,i] = Sn,i and Fn,i ⊆ Fn,i+1.

We say that the array is mean-zero if E[Sn,i] = 0 for each n, i and square-integrable if
supi E[S2

n,i] < ∞ for each n and we define the differences of the array as Un,i := Sn,i −Sn,i−1
for i = 1, . . . , kn (setting Sn,0 = 0 by convention).

THEOREM 3.1 ([23], Theorem 3.2). Let {Sn,i,Fn,i : 1 ≤ i ≤ kn, n ∈ N} be a mean-zero
square-integrable martingale array with differences Un,i . Suppose that

max
i=1,...,kn

|Un,i | p−→ 0 as n → ∞,(3.1)

sup
n

E

[
max

i=1,...,kn

U2
n,i

]
< ∞,(3.2)

kn∑
i=1

U2
n,i

p−→ η2 ∈ [0,∞) as n → ∞.(3.3)

Then Sn,kn

d−→ Z, where Z ∼ N (0, η2).

In [40], Penrose applied Theorem 3.1 to prove a CLT for the number of clusters in clas-
sical percolation. There is a technical difficulty in extending this argument to our setting:
the number of percolation clusters in a box depends on a finite number of random variables,
whereas the component count for a Gaussian field depends on the white noise throughout Rd

(or equivalently on restrictions of the white noise to unit cubes indexed by Z
d ). We therefore

require a version of this result for infinite martingale arrays (i.e., we need to allow kn to be
infinite). More precisely we wish to apply this result in the case that i is indexed by Z

d with
the standard lexicographic ordering. The role of this particular ordering will become clear
later on; the important fact is that it is preserved by shifts of Zd .

To this end, we make some definitions. We say that a collection of random variables Sn,v

and σ -algebras Fn,v , indexed by n ∈ N and v ∈ Z
d , form a lexicographic martingale array if

for all n ∈ N and all v � w (where � denotes the lexicographic order) we have

E[Sn,w|Fn,v] = Sn,v and Fn,v ⊆Fn,w.

The array is mean-zero if E[Sn,v] = 0, and square-integrable if supv E[S2
n,v] < ∞ for each n.

We say that a sequence of points in Z
d converges to ±∞∗ (in the lexicographic ordering)

if each coordinate of the points tends to ±∞. By the backwards martingale convergence
theorem, for each n, Sn,v converges almost surely to some integrable limit as v tends to
−∞∗. Therefore, we assume without loss of generality that this limit is zero for each n.

We say that the array is regular at infinity if the following holds: for each n ∈ N,
i ∈ {1, . . . , d − 1} and (v1, . . . , vi) ∈ Z

i ,

lim
vi+1,...,vd→∞Sn,v = lim

vi+1,...,vd→−∞Sn,v′,
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where v = (v1, . . . , vd) and v′ = (v1, . . . , vi−1, vi + 1, vi+1 . . . , vd). (Note that both of the
above limits exist, almost surely and in L2, by the Lp martingale convergence theorems for
forward/reverse martingales.) For v ∈ Z

d , let v− denote the previous element in the lexi-
cographic ordering of Zd , and define the differences of the array as Un,v := Sn,v − Sn,v− . A
simple argument iterating over the coordinates of v shows that being regular at infinity allows
us to write

Sn,v − Sn,w = ∑
w≺k�v

Un,k

for any w � v, where the limit implied by this summation holds almost surely and in L2. Note
that a priori we do not know that this sum converges absolutely, so the order of summation
should be taken in a way that is consistent with the lexicographic order. However, we only
work in the setting that E[∑v∈Zd |Un,v|p] < ∞ for p ∈ {1,2}, and so we may ignore this sub-
tlety. Then using the Lp martingale convergence theorems for forward/reverse martingales,
we see that (for an array which is square-integrable and regular at infinity)

(3.4) Sn,∞∗ := lim
v→∞∗ Sn,v = ∑

k∈Zd

Un,k,

where the limit holds almost surely and in L2.

THEOREM 3.2. Let {Sn,v,Fn,v : v ∈ Z
d, n ∈ N} be a mean-zero square-integrable lexi-

cographic martingale array, which is regular at infinity. Suppose that

sup
v∈Zd

|Un,v| p−→ 0 as n → ∞,(3.5)

sup
n

E

[
sup
v∈Zd

U2
n,v

]
< ∞,(3.6)

∑
v∈Zd

U2
n,v

L1−→ η2 ∈ [0,∞) as n → ∞,(3.7)

E

[∑
v∈Zd

|Un,v|
]

< ∞ for all n ∈ N.(3.8)

Then Var[Sn,∞∗] → η2 and Sn,∞∗ d−→ Z where Z ∼ N (0, η2).

REMARK 3.3. Compared to Theorem 3.1, as well as holding for lexicographic arrays
Theorem 3.2 also strengthens the mode of convergence by adding the summability condition
(3.8) and assuming L1 convergence in (3.7) rather than convergence in probability as in (3.3).

PROOF. Using orthogonality of martingale increments and (3.4),

Var[Sn,∞∗] = E

[∑
v∈Zd

U2
n,v

]
,

and hence (3.7) implies that Var[Sn,∞∗] → η2, proving the first part of our result. Moreover,
combining this with (3.8) we can find a sequence of points an ∈ N tending to infinity such
that as n → ∞,

(3.9) sup
p=1,2

E

[ ∑
v /∈�an−1

|Un,v|p
]

→ 0.
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Recalling that martingale increments are orthogonal, this implies that
∑

v /∈�an−1
Un,v con-

verges to zero in L2 (and hence in probability).
We now define a finite martingale array by restricting Sn,v to the box �an . Specifically, for

each n we let v1, v2, . . . , vkn denote the elements of �an ∩ Z
d ordered lexicographically and

we define

Tn,j := Sn,vj
, Gn,j := Fn,vj

,

Vn,j := Tn,j − Tn,j−1 = ∑
vj−1≺v�vj

Un,v for j = 1, . . . , kn

with the convention that v0 = −∞∗. We wish to apply Theorem 3.1 to this construction. First,
we consider the differences Vn,j in terms of Un,v . If the point preceding vj lexicographically
is contained in �an (i.e., if v−

j = vj−1), then Vn,j = Un,v for some v ∈ �an . Otherwise, we
have v /∈ �an for all v such that vj−1 ≺ v ≺ vj . Considering these two cases, we see that

max
j=1,...,kn

|Vn,j | ≤ max
v∈�an

|Un,v| +
∑

j :v−
j /∈�an

∑
vj−1≺v�vj

|Un,v| ≤ sup
v∈Zd

|Un,v| +
∑

v /∈�an−1

|Un,v|.

By (3.5) and (3.9), this converges to zero in probability, verifying the first condition of The-
orem 3.1.

By the same reasoning,

max
j=1,...,kn

V 2
n,j ≤ max

v∈�an

U2
n,v + ∑

j :v−
j /∈�an

( ∑
vj−1≺v�vj

Un,v

)2
.

Taking expectations, using orthogonality of martingale increments, (3.6) and (3.9), we see
that the second condition of Theorem 3.1 also holds.

We also have

E

∣∣∣∣∣
kn∑

j=1

V 2
n,j − ∑

v:v,v−∈�an

U2
n,v

∣∣∣∣∣≤ E

[ ∑
j :v−

j /∈�an

( ∑
vj−1≺v�vj

Un,v

)2]
≤ ∑

v /∈�an−1

E
[
U2

n,v

]
,

which converges to zero by (3.9). Hence, by (3.7) (and applying (3.9) once more) we verify
the third and final condition of Theorem 3.1. We therefore deduce that

kn∑
j=1

Vn,j
d−→ Z,

where Z ∼N (0, η2). Finally, we observe that by the two types of expression for Vn,j in terms
of Un,v described above∣∣∣∣∣

kn∑
j=1

Vn,j − Sn,∞∗

∣∣∣∣∣=
∣∣∣∣∣

kn∑
j=1

Vn,j − ∑
v∈Zd

Un,v

∣∣∣∣∣≤ ∑
v /∈�an

|Un,v|.

The right-hand side converges to zero in L1 by (3.9) and so we see that Sn,∞∗ d−→ Z as
required. �

3.2. Application to the component count. We can now outline our proof of Theorem 1.2.
In fact, we will prove a version of this result which holds for the number of components
contained in slightly more general domains (i.e., not just the cube �R = [−R,R]d ).

We say that D ⊂ R
d is a box-domain if it is a box D = [a1, b1]× · · ·× [ad, bd ] considered

as a stratified domain in the sense of Section 2. We write |D| for the volume of a box-domain,
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and asp(D) = mini |bi − ai |/maxi |bi − ai | for its aspect ratio, that is, the ratio of its shortest
to longest side lengths. We say that a sequence of box-domains Dn converges to R

d (written
Dn →R

d ) if
⋃

n

⋂
m>n Dm = R

d and infn asp(Dn) > 0.
Henceforth, we suppose that f satisfies Assumption 1.1, and fix � ∈ {ES,LS} and � ∈ R.

Recall from Section 2 that N�(D) = N�(D,f, �) denotes the component count for f at level �

inside D. Our desired CLT now takes the following form.

THEOREM 3.4 (CLT for the component count). There exists a σ 2 ≥ 0 such that, for every
sequence of box-domains Dn →R

d , as n → ∞,

Var[N�(Dn)]
|Dn| → σ 2 and

N�(Dn) −E[N�(Dn)]
|Dn|1/2

d−→ σZ,

where Z is a standard normal random variable. A representation for σ 2 is given in (3.34).

PROOF OF THEOREM 1.2. For a sequence Rn → ∞, take Dn = [−Rn,Rn]d in Theo-
rem 3.4. �

Theorem 3.4 is proven in the following way. Recall that f may be represented as f =
q ∗ W where W is the white noise on R

d . For v ∈ Z
d , recall that Bv = v + [0,1]d , and write

Wv for the restriction of W to the cube Bv . Fix a sequence of box-domains Dn → R
d , and

define for v ∈ Z
d ,

Sn,v = E[N�(Dn)|Fn,v] −E[N�(Dn)]
|Dn|1/2 , where Fn,v := Fv := σ(Wu|u � v),(3.10)

recalling that � denotes the lexicographic order.

LEMMA 3.5. Equation (3.10) defines a mean-zero lexicographic martingale array,
which is square-integrable, regular at infinity and satsifies

(3.11) lim
v→−∞∗ Sn,v = 0 and Sn,∞∗ = lim

v→∞∗ Sn,v = N�(Dn) −E[N�(Dn)]
|Dn|1/2 .

PROOF. It is clear that (3.10) defines a lexicographic martingale array (by the tower
property of conditional expectation). Square-integrability follows since N�(Dn) has a finite
second moment for each n. By Lévy’s downward and upward convergence theorems, respec-
tively, we have

(3.12)

as v → −∞∗
E
[
N�(Dn)|Fv

]→ E

[
N�(Dn)

∣∣∣ ⋂
v∈Zd

Fv

]
= E

[
N�(Dn)

]
,

as v → ∞∗
E
[
N�(Dn)|Fv

]→ E

[
N�(Dn)

∣∣∣σ( ⋃
v∈Zd

Fv

)]
= N�(Dn).

This verifies (3.11).
Finally, we show that (3.10) is regular at infinity. We fix v1, . . . , vi ∈ Z and two sequences

j (m) and k(m) in Z
d such that

j (m) = (
v1, . . . , vi, a

(m)
1 , . . . , a

(m)
d−i

)
,

k(m) = (
v1, . . . , vi + 1, b

(m)
1 , . . . , b

(m)
d−i

)
,
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where a
(m)
1 , . . . , a

(m)
d−i → ∞ and b

(m)
1 , . . . , b

(m)
d−i → −∞ with m. By Lévy’s upward and down-

ward theorems, as m → ∞ we have

E
[
N�(Dn)|Fj (m)

]→ E
[
N�(Dn)|F−] and E

[
N�(Dn)|Fk(m)

]→ E
[
N�(Dn)|F+],

where

F− = σ

( ⋃
m∈N

Fj (m)

)
and F+ = ⋂

m∈N
Fk(m) .

Regularity at infinity then follows if we can show that the completions of F+ and F− co-
incide. Observe that F+ is generated by events in F− together with those measurable with
respect to a ‘tail’ of independent variables. Therefore, we can prove equality by generalising
the proof of Kolmogorov’s zero-one law. Specifically for A ∈ F+, defining

Gm := σ
(
Wv|k(m) � v � k(1)) and G∞ = σ

(⋃
m

Gm

)
we may apply Lévy’s upward theorem once more to see that

(3.13) E
[
1A|σ (F−,Gm

)]→ E
[
1A|σ (F−,G∞

)]= 1A,

where the final equality follows since σ(F−,G∞) ⊇ Fk(1) ⊇ F+. However, since F+ is in-
dependent of Gm we have

E
[
1A|σ (F−,Gm

)]= E
[
1A|F−].

Combined with (3.13), we conclude that A is measurable with respect to the completion of
F−, as required. �

As a consequence of this lemma, Theorem 3.4 will follow from our lexicographic mar-
tingale CLT (Theorem 3.2) provided we verify conditions (3.5)–(3.8). This verification will
require several preparatory lemmas.

The first step is to find an alternative representation of the martingale differences Un,v . Let
W ′ be an independent copy of W and define a new white noise

W̃v(A) = W(A\Bv) + W ′(A ∩ Bv).

Roughly speaking, W̃v is simply W after resampling independently on Bv . We then define
f̃v = q ∗ W̃v and

(3.14) �v(D) = N�(D,f, �) − N�(D, f̃v, �),

that is, �v(D) is the change in the component count inside a domain D upon resampling
the white noise on the cube Bv . The importance of resampling comes from the following
representation:

(3.15) Un,v = |Dn|−1/2
E
[
�v(Dn)|Fv

]
a.s.,

which follows easily from the independence of the white noise on disjoint regions. Finally,
we define the perturbation function pv :Rd →R by

pv(x) := f̃v(x) − f (x) =
∫
Bv

q(x − u)d
(
W ′ − W

)
(u).

Note that f̃v is equal to f in law, and pv is a centred Gaussian field.
We can control �v(D) by applying the stability estimates from Section 2. We let

V = {w ∈ Z
d : D ∩ Bw �= ∅} denote the indices of cubes which intersect D. For w ∈ V , re-

call the notion of stability of a pair of functions (g,p) (at level �) on D ∩ Bw , considered as
a stratified domain. For v ∈ Z

d , we define the (random) unstable set

Uv = Uv(D) := {
w ∈ V |(f,pv) is unstable on D ∩ Bw

}
.

Recall also the exponent β > 9d from Assumption 1.1, which appears in subsequent bounds.
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LEMMA 3.6. For each δ > 0, there exists c > 0, independent of D, such that, for all
v ∈ Z

d ,

P(v ∈ U0) ≤ c
(
1 + |v|)−β+δ

.

PROOF. By Lemma 2.4, for every ε > 0 there exist cε, c > 0, independent of D, such
that

P(v ∈ U0) ≤ cε inf
τ>c

√
Mv

(
τ 1−ε + e−(τ−c

√
Mv)

2/(2Mv)
)
,

where

Mv = sup
x,y∈v+�2

sup
|α|,|γ |≤2

∣∣∂α
x ∂γ

y Cov
[
p0(x),p0(y)

]∣∣.
By the white noise representation of p0, for |α|, |γ | ≤ 2,∣∣∂α

x ∂γ
y Cov

[
p0(x),p0(y)

]∣∣= ∣∣∣∣2∫
B0

∂α
x q(x − u)∂γ

y q(y − u)du

∣∣∣∣,
where the exchange of derivative and integration is justified by the dominated convergence
theorem, since q ∈ C3(Rd) and B0 is compact. By Assumption 1.1, we conclude that
Mv ≤ c1(1 + |v|)−2β . Choosing τ = 2c

√
c1(1+|v|)−β+η ≥ 2c

√
Mv for some η > 0, we have

P(v ∈ U0) ≤ c2
((

1 + |v|)−(β−η)(1−ε) + e−c3(1+|v|)2η)
for some c2, c3 > 0 independent of D. Choosing η, ε > 0 small enough, we can ensure that
this expression is bounded by cδ(1 + |v|)−β+δ for any δ > 0 as required. �

The previous lemma, combined with the stability in Lemma 2.1, shows that with high
probability �v(D) = 0 if v is far away from D. In the following lemma, we control the
(2 + ε)-moments of �v(D); this makes essential use of the third moment bound in Theo-
rem 1.6.

LEMMA 3.7 (Bounded moments). For each ε ∈ [0,1 − 9d/β), the following hold:

1. There is a c1 > 0 such that, for every box-domain D,

E
[∣∣�0(D)

∣∣2+ε]≤ c1.

2. For every a > 0 and γ < β(1 − ε)/3, there is a c2 > 0 such that, for every box-domain
D with asp(D) ≥ a, and R ≥ 1,∑

dist(v,D)>R

E
[∣∣�v(D)

∣∣2+ε]≤ c2|D|3R−γ (Rd + R|D| d−1
d
)
.

3. For every a > 0, there is a c3 > 0 such that, for every box-domain D with asp(D) ≥ a,∑
v∈Zd

E
[∣∣�v(D)

∣∣2+ε]≤ c3|D|.

PROOF. Recall that Nc(D ∩ Bv,g) denotes the number of stratified critical points of g

in D ∩ Bv , and define Nc(Bv) = Nc(D ∩ Bv,f ) + Nc(D ∩ Bv, f̃0). By Lemma 2.2 (applied
to g = f and p = p0),

(3.16)
∣∣�0(D)

∣∣≤ ∑
v∈V

Nc(Bv)1v∈U0 .
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In order to control the (2 + ε)-moment of this quantity, we use the following elemen-
tary bound, which follows from the reverse Minkowski inequality: for x1, . . . , xn ≥ 0 and
p ∈ (0,1),

(3.17)

(
n∑

i=1

x
p
i

)1/p

≥ (xp
1

)1/p + · · · (xp
n

)1/p =
n∑

i=1

xi.

Combining this with (3.16) yields, for any ε ∈ (0,1),

∣∣�0(D)
∣∣2+ε ≤

(∑
v∈V

Nc(Bv)1v∈U0

)2+ε

=
((∑

v∈V

Nc(Bv)1v∈U0

)3) 2+ε
3

=
( ∑

u,v,w∈V

Nc(Bu)Nc(Bv)Nc(Bw)1u,v,w∈U0

) 2+ε
3

≤ ∑
u,v,w∈V

(
Nc(Bu)Nc(Bv)Nc(Bw)

) 2+ε
3 1u,v,w∈U0 .

Taking expectations and using Hölder’s inequality, we have

(3.18) E
[∣∣�0(D)

∣∣2+ε]≤ ∑
u,v,w∈V

∏
i∈{u,v,w}

E
[
Nc(Bi)

3] 2+ε
9 P(i ∈ U0)

1−ε
9 .

By the third moment bound (Theorem 1.6) applied to f and f̃0 over each stratum of Bi , and
by stationarity, we have that E[Nc(Bi)

3] is uniformly bounded over i ∈ Z
d . We therefore see

that

(3.19) E
[∣∣�0(D)

∣∣2+ε]≤ c4

(∑
v∈V

P(v ∈ U0)
1−ε

9

)3
≤ c4

(∑
v∈Zd

P(v ∈ U0)
1−ε

9

)3

for a constant c4 > 0 depending only on f . Lemma 3.6 shows that this summand is
bounded by c5(1 + |v|)−(β−δ)(1−ε)/9 for any δ > 0. Choosing δ sufficiently small so that
(β − δ)(1 − ε)/9 > d (which is possible since ε < 1 − 9d/β) ensures that the exponent is
less than −d and so (3.19) is bounded uniformly over D.

We turn to the second statement of the lemma. Let δ > 0 and define γ = (β − δ)(1 − ε)/3;
without loss of generality, we may assume δ is sufficiently small so that γ > 3d . By (3.19)
and stationarity,∑

dist(v,D)>R

E
[∣∣�v(D)

∣∣2+ε]≤ c6
∑

dist(v,D)>R

(∑
w∈V

(
1 + |v − w|)−γ /3

)3

≤ c6
∑

dist(v,D)>R

(∑
w∈V

dist(v,D)−γ /3
)3

(3.20)

≤ c6|D|3 ∑
dist(v,D)>R

dist(v,D)−γ .

We now claim that

(3.21)
∑

dist(v,D)>R

dist(v,D)−γ ≤ c7
(
R−γ+d + |D| d−1

d R−γ+1),
where c7 > 0 depends on d , γ and a. Then combining (3.20) and (3.21) establishes the second
statement of the lemma. It remains to prove (3.21), which we do below in Lemma 3.8.
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For the third statement, we take R to be the shortest side length of D, which is comparable
to |D|1/d by assumption, and partition Z

d into regions with distance greater/less than R

from D. Then choose γ ∈ (3d,β(1 − ε)/3), and combine the first two statements of the
lemma. �

LEMMA 3.8. Let γ > d and let D be a box-domain such that asp(D) ≥ a > 0 and
|D| ≥ 1, then there exists a constant c > 0 depending only on d , γ and a such that for R ≥ 1,∑

v∈Zd :dist(v,D)>R

dist(v,D)−γ ≤ c
(
R−γ+d + |D| d−1

d R−γ+1).
PROOF. Let D′ = [a1, b1]×· · ·×[ad, bd ] be the smallest box-domain containing D such

that ai, bi ∈ Z for all i. It is enough to prove the lemma for D′, since dist(v,D′) ≤ dist(v,D)

for any v and |D′| ≤ cd |D|. For v ∈ Z
d , we write C(v) for the closest point to v in D′ ∩ Z

d .
The idea of the proof is to partition {v|dist(v,D′) > R)} according to the value of C(v).

For i = 0,1, . . . , d , let Facei denote the points x ∈ D′ ∩Z
d such that d + i of their nearest

neighbours (in Z
d ) are also contained in D′. So, for example, Face0 denotes the corners of

D′ and Faced denotes the points of Z
d in the interior of D′. We note that the number of

points in Facei is at most c|D′| i
d , where c depends on d and a, by elementary geometric

considerations.
We define Sx = {v|dist(v,D′) > R,C(v) = x}. Observe that Sx = ∅ whenever x ∈ Faced .

Moreover, when x ∈ Facei and v ∈ Sx , x − v must be orthogonal to each of the i directions
in which both neighbours of x are contained in D′. In other words, Sx − x is contained in a
subspace of dimension d − i, and hence∑

v∈Sx

|v − x|−γ ≤ ∑
y∈Zd−i :|y|>R

|y|−γ ≤ cγ R−γ+d−i .

We then conclude that∑
v∈Zd :dist(v,D′)>R

dist
(
v,D′)−γ =

d−1∑
i=0

∑
x∈Facei

∑
v∈Sx

|v − x|−γ ≤
d−1∑
i=0

cd

∣∣D′∣∣i/dcγ R−γ+d−i

≤ c
(
R−γ+d + ∣∣D′∣∣ d−1

d R−γ+1)
as required. �

The next ingredient is a ‘stabilisation’ property that �0(Dn) converges almost surely as
Dn → R

d , which follows essentially from the fact that, by Lemma 3.6, the unstable set
U0 =⋃

nU0(Dn) is almost surely finite (at least, as long as ∂Dn does not intersect any cube
Bv too many times). This requires only the weaker assumption β > d .

A sequence of box-domains Dn →R
d will be called well spaced if the number of indices

n for which ∂Dn intersects Bv is bounded over v ∈ Z
d .

LEMMA 3.9 (Stabilisation). For every well-spaced sequence of box-domains Dn → R
d ,

there exists a random variable �0(R
d) such that

�0(Dn)
a.s.−−→ �0

(
R

d) as n → ∞.

PROOF. Define the set

U0 :=⋃
n

U0(Dn) = {
w ∈ Z

d |(f,p0) is unstable on Dn ∩ Bw for some n
}
.
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By Lemma 3.6, the fact that Dn is well spaced and the Borel–Cantelli lemma, U0 is finite
almost surely. Fix such a realisation of f and p0, and choose 0 < R1 < R2 such that (i)
Bw ⊂ �R1 for all w ∈ U0, and (ii) every bounded component of {f = �}, which intersects
�R1 is contained in �R2 (i.e., does not intersect Rd\�R2 ).

We claim that if �R2 ⊆ Dn, then

(3.22) �0(Dn) = N�(�R1, f, �) − N�(�R1, f̃0, �),

where N�(�R1, f, �) denotes the number of bounded components of {f ≥ �} (or {f = �} if
� = LS), which intersect �R1 . This concludes the proof of the lemma by taking n → ∞.

To prove (3.22), observe that

N�(Dn,f, �) = N�(Dn\�R1, f, �) + N�(�R1, f, �),

which holds because any component of {f ≥ �} (or {f = �}) contained in Dn is either con-
tained in Dn \ �R1 or intersects �R1 , and by the definition of R2, all components of the
second type are contained in Dn. This also holds if we replace f by f̃0 of course, and so

�0(Dn) = �0(Dn\�R1) + N�(�R1, f, �) − N�(�R1, f̃0, �).

Finally, by Lemma 2.1 (applied to g = f and p = p0) and the fact that Bw ⊂ �R1 for all
w ∈ U0, we have �0(D\�R1) = 0. Combining these gives (3.22). �

Finally, we will require an ergodic theorem to prove the convergence in (3.7). The follow-
ing theorem will be well suited to our purposes, as it allows us to sum over translations in d

dimensions.

THEOREM 3.10 (Multi-variate ergodic theorem [27], Theorem 25.12). Let ξ be a ran-
dom element in some set S with distribution μ. Let T1, . . . , Td be μ-preserving transforma-
tions of S. Assume that the invariant σ -algebra of each Ti is trivial and let F ∈ Lp(μ) for
some p > 1, then as n1, . . . , nd → ∞,

1

n1 . . . nd

d∑
i=1

∑
ki≤ni

F
(
T

k1
1 . . . T

kd

d ξ
)→ E

[
F(ξ)

]
,

where convergence occurs almost surely and in Lp .

With these results in hand, we are ready to prove Theorem 3.4.

PROOF OF THEOREM 3.4. We first fix a well-spaced sequence of box-domains Dn →R
d

and prove the result for this sequence, that is, we prove that there exists σ 2 ≥ 0 (possibly
depending on Dn) such that, as n → ∞,

(3.23)
Var[N�(Dn)]

|Dn| → σ 2 and
N�(Dn) −E[N�(Dn)]

|Dn|1/2
d−→ σZ,

where Z is a standard normal random variable. At the end of the proof, we will argue that σ 2

does not depend on the sequence Dn, and also lift the requirement for Dn to be well spaced.
Recall from Lemma 3.5 that it is sufficient for us to verify conditions (3.5)–(3.8) for Un,v =

|Dn|−1/2
E[�v(Dn)|Fv].

Consider first (3.5). Fix η > 0 and ε ∈ (0,1 − 9d/β). By applying the union bound,
Markov’s inequality, Jensen’s inequality and the third statement of Lemma 3.7, we have

P

(
sup
v∈Zd

|Un,v| > η
)

≤ η−(2+ε)
∑
v∈Zd

E
[|Un,v|2+ε]

≤ η−(2+ε)|Dn|− 2+ε
2
∑
v∈Zd

E
[∣∣�v(Dn)

∣∣2+ε]≤ c3η
−(2+ε)|Dn|− ε

2 .

Since this converges to zero as n → ∞, we have verified (3.5).
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We can use similar estimates for (3.6): replacing the supremum by a sum, using the con-
ditional Jensen inequality and the third statement of Lemma 3.7,

E

[
sup
v∈Zd

U2
n,v

]
≤ 1

|Dn|
∑
v∈Zd

E
[
�v(Dn)

2]≤ c3,

as required. Furthermore, by the conditional Jensen inequality, the fact that �v is integer
valued and the above bound,

E

[∑
v∈Zd

|Un,v|
]

≤ |Dn|−1/2
∑
v∈Zd

E
[∣∣�v(Dn)

∣∣]≤ |Dn|−1/2
∑
v∈Zd

E
[
�v(Dn)

2]< ∞

verifying (3.8).
We turn now to (3.7). Letting τv denote translation by v (for v ∈ Z

d ), we note that the se-
quence of random variables �v(Dn) for n ∈ N has the same distribution as the sequence
�0(τ−vDn). Therefore, by Lemma 3.9, for each v ∈ Z

d there exists a random variable
�v(R

d) such that �v(Dn)
a.s.−−→ �v(R

d) as n → ∞. For v ∈ Z
d and a box-domain D, let

Xv(D) = E
[
�v(D)|Fv

]
and Xv = E

[
�v

(
R

d)|Fv

]
.

The statement we need to prove is that

(3.24) |Dn|−1
∑
v∈Zd

X2
v(Dn)

L1−→ σ 2

as n → ∞. Let Vn = {w ∈ Z
d : Dn ∩ Bw �= ∅} denote the indices of cubes, which intersect

Dn. Our strategy is roughly to show that the sum over v /∈ Vn is negligible whilst for v ∈ Vn

we can approximate X2
v(Dn) by X2

v , and hence apply the ergodic theorem.
Aiming towards the setting of Theorem 3.10, we let ξ = (Wv,W

′
v)v∈Zd denote the pair of

white noise processes used to define f and (f̃v)v∈Zd and work with the probability space in-
duced by the distribution of ξ . Let T1, . . . , Td denote translation by distance 1 in the positive
direction of each of the coordinate axes, respectively. These are clearly measure preserving
transformations of ξ = (Wv,W

′
v)v∈Zd . Moreover, since the Wv and W ′

v are independent and
identically distributed, the σ -algebra of invariant events associated to each such transforma-
tion is trivial (this follows from a standard argument using Kolmogorov’s 01-law). In the
following paragraph, we adjust our notation to emphasise the dependence on the underlying
white noise processes: for example, we write Xv(D, ξ) := Xv(D), Xv(ξ) := Xv and similarly
for other variables. We claim that for any v ∈ Z

d ,

(3.25) Xv(ξ) = X0(τ−vξ),

where τ−vξ = (τ−vW, τ−vW
′) denotes the translated white noise processes defined by

(τ−vW)u = Wu+v for u ∈ Z
d (and similarly for W ′). To prove this, first note that for any

box-domain D,

�v(D, ξ) = �0(τ−vD, τ−vξ).

This follows from the definition of �v in (3.14) since translating W and W ′ by −v is equiv-
alent to translating f and f̃ by −v (courtesy of (1.3)). Choosing a sequence of box-domains
Dn → R

d (and noting that this is equivalent to τ−vDn → R
d for fixed v), we see from

Lemma 3.9 that

�v(Dn, ξ) → �v

(
R

d, ξ
)

and �0(τ−vDn, τ−vξ) → �0
(
R

d, τ−vξ
)

almost surely.

Hence, these limits coincide. Finally, noting that

(3.26)
F0(τ−vW) := σ

(
(τ−vW)u|u � 0

)= σ(Wu+v|u � 0)

= σ(Wu|u � v) =: Fv(W),
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where the penultimate equality relies on our use of the lexicographic ordering, we see that

Xv(ξ) = E
[
�v

(
R

d, ξ
)|Fv(W)

]= E
[
�0
(
R

d, τ−vξ
)|F0(τ−vW)

]= X0(τ−vξ).

This verifies (3.25). By Fatou’s lemma, Lemma 3.9 and the first part of Lemma 3.7,

(3.27) E
[∣∣X0(ξ)

∣∣2+ε]≤ lim inf
n→∞ E

[∣∣X0(Dn, ξ)
∣∣2+ε]≤ c1,

so X2
0 has a finite (1 + ε/2)-th moment. Hence, noting that τv = T

v1
1 · · ·T vd

d for v ∈ Z
d , we

may apply Theorem 3.10 to conclude that

(3.28) |Dn|−1
∑
v∈Vn

X2
v = |Dn|−1

∑
v∈Vn

X2
0(τ−vξ)

L1−→ E
[
X2

0
]

as n → ∞.
It remains to compare the left-hand side of (3.24) to |Dn|−1∑

v∈Vn
X2

v . As such, for each
n ∈N, choose box-domains D−

n ⊂ Dn ⊂ D+
n of the form

D±
n := ⋃

v∈V ±
n

Bv

for index sets V ±
n ⊂ Z

d such that, as n → ∞,

ζn := max
{
1 − ∣∣D−

n

∣∣/|Dn|,
∣∣D+

n

∣∣/|Dn| − 1
}→ 0

and

ηn := min
{
dist

(
V −

n ,Zd\Vn

)
,dist

(
Z

d\V +
n ,Vn

)}∼ |Dn| 1−λ
d ,

where λ > 0 will be specified below. Roughly speaking, this means that the distance between
D−

n (resp., D+
n ) and Dn goes to infinity, but slowly compared to the order of |Dn|.

We now show that the contribution to (3.24) from v outside V +
n is negligible; by the second

statement of Lemma 3.7, for every γ < β/3 there is a cγ > 0 such that

(3.29)
1

|Dn|E
[ ∑
v /∈V +

n

X2
v(Dn)

]
≤ cγ |Dn|2η−γ

n

(
ηd

n + ηn|Dn| d−1
d
)≤ cγ |Dn|3−λ/d−(1−λ)

γ
d .

Since γ > 3d , this expression will converge to zero provided we choose λ > 0 sufficiently
small.

We next claim that the contributions from v inside V −
n are well approximated by their

stationary counterparts, that is,

(3.30) |Dn|−1
∑

v∈V −
n

(
X2

v(Dn) − X2
v

) L1−→ 0.

Clearly, it is sufficient to show that

lim
n→∞ sup

v∈V −
n

E
[∣∣X2

v(Dn) − X2
v

∣∣]= 0.

Suppose that this was not true, so there exists some sequence of points vn ∈ V −
n such that

(3.31) 0 < lim inf
n→∞ E

[∣∣X2
vn

(Dn) − X2
vn

∣∣]= lim inf
n→∞ E

[∣∣X2
0(τ−vnDn) − X2

0
∣∣].

We note that τ−vnDn converges to R
d since ηn → ∞. Hence, by Lemma 3.9,

X2
0(τ−vnDn)

a.s.−−→ X2
0 as n → ∞.
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Moreover, by the first statement of Lemma 3.7, X2
0(τ−vnDn) − X2

0 is uniformly integrable.
However, these two facts contradict (3.31) and so (3.30) is proved.

Finally, we note that the contributions to (3.24) from V +
n \V −

n (or Vn \V −
n for the station-

ary counterparts) are also negligible. Specifically, by the first statement of Lemma 3.7,

(3.32) |Dn|−1
E

[ ∑
v∈V +

n \V −
n

X2
v(Dn)

]
≤ 2ζn sup

v∈Zd

E
[
X2

v(Dn)
]≤ 2c1ζn → 0,

and similarly by (3.27)

(3.33) |Dn|−1
E

[ ∑
v∈Vn\V −

n

X2
v

]
≤ c1ζn → 0.

Combining (3.29), (3.30), (3.32) and (3.33) with (3.28) allows us to conclude that (3.24)
holds. This verifies the final condition required, and hence proves (3.23).

It remains to argue that σ 2 is independent of the choice of the sequence Dn, and that we
may lift the requirement that Dn be well spaced. To prove the former, suppose En → R

d

and Fn → R
d are two well-spaced sequences such that (3.23) holds for distinct σ 2

E and σ 2
F

respectively. Consider an alternating sequence Gn, that is, Gn = En if n is odd, and Gn = Fn

if n is even. Since Gn → R
d and Gn is also well spaced, (3.23) holds for a constant σ 2

G,
which is in contradiction with the fact that (3.23) holds for σ 2

E and σ 2
F along subsequences of

odd, respectively even, indices.
To lift the requirement that Dn be well spaced, we fix the (unique) value of σ 2 established

in the previous paragraph. Then let Dn → R
d be arbitrary, and suppose for the sake of con-

tradiction that (3.23) does not hold for σ 2. Then by compactness there exists an s ∈ R and a
constant p ∈ [0,1] such that p �= P[Z ≥ s/σ ] (interpreted as 0 if σ 2 = 0), satisfying

P
[|Dn|−1/2(N�(Dn) −E

[
N�(Dn)

])≥ s
]→ p

along a subsequence. Since Dn →R
d , one can extract a further subsequence such that Dn is

well spaced. However, since (3.23) holds for this subsequence, we have a contradiction. �

REMARK 3.11. From the above proof (in particular (3.28)), it is apparent that the limit-
ing variance stated in Theorems 1.2 and 3.4 is given by

(3.34) σ 2 = E
[
E
[
�0
(
R

d)|F0
]2]= E

[
E

[
lim

n→∞N�(�n,f, �) − N�(�n, f̃0, �)
∣∣F0

]2]
,

where �0(R
d) is the random variable defined in Lemma 3.9 for the sequence Dn = �n (in

fact one can take any well-spaced Dn → R
d in place of �n). This expression highlights the

importance of the choice of filtration for our proof: clearly, (3.34) could not hold simulta-
neously for arbitrary filtrations satisfying the normalisation (3.12). Our application of the
ergodic theorem relies crucially on the equality in (3.26). This property holds only for the
standard lexicographic order up to reflection/reordering of the axes.

REMARK 3.12. Recall that our proof requires the correlation decay β > 9d in Assump-
tion 1.1. This condition arises from Lemma 3.7, where it is combined with a third mo-
ment bound for critical points (Theorem 1.6) to control the (2 + ε) moments of �v(D).
If higher order moment bounds for critical points were available, then by adjusting the proof
of Lemma 3.7 we could reduce the decay assumption on β . Specifically, if we knew that
E[Nc(1)k] < ∞ for some integer k ≥ 4, then we could replace (3.18) by

E
[∣∣�0(D)

∣∣2+ε]≤ ∑
u,v,w∈V

∏
i∈{u,v,w}

E
[
Nc(Bi)

k] 2+ε
3k P(i ∈ U0)

k−2−ε
3k ,
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which would allow us to obtain the CLT for all β > 3kd/(k − 2). Interestingly, even if all
such moments were known to be finite, this would still only cover the regime β > 3d , and
not the entire short-range correlated regime β > d .

After this manuscript was submitted for publication, higher order moment bounds for crit-
ical points were proven independently in [4, 20]. Specifically, it was shown that if f is a
stationary Ck+1 field with a continuous spectral density then E[Nc(1)k] < ∞. Hence, if such
a field satisfies Assumption 1.1 for β > 3kd/(k − 2) then the CLT holds for the component
count.

3.3. Positivity of the limiting variance. We now turn to proving Theorem 1.3. Again we
work under Assumption 1.1, and take � ∈ {ES,LS} and � ∈ R as fixed.

Let us briefly describe our strategy. Recall that the limiting variance σ 2 = σ 2
� (�) is given

by (3.34), whose expression involves conditioning on F0. The first step is to bound σ from
below by replacing the conditioning on F0 with conditioning on a single univariate Gaussian
Z corresponding to the mean of the white noise on a large box D. Then it is sufficient to
show that the variance of the mean component count, as Z varies, is strictly positive. In turn,
it suffices to show that the mean component count is not constant when a drift (i.e., a change
in the mean) is added to Z. On the other hand, as long as

∫
q > 0, adding such a drift has the

effect of shifting the mean of the field inside the large box, with boundary-order corrections.
So, since the component count density (i.e., the function μ�(�) in (1.1)) is strictly positive
and tends to zero as the level tends to infinity, provided the box and drift are chosen large
enough, the drift necessarily has a nonzero effect on the mean component count, as required.

We now formalise this strategy. Let us begin with a variant of the stabilisation lemma
proven above. Recall that f̃0 denotes the field f with the white noise in B0 resampled. For
brevity, we henceforth drop the level � from the notation N�(D,g, �).

LEMMA 3.13. Let w ∈ C4(Rd) be such that there exists c > 0 and γ > 3d/2 so that, for
all x,

(3.35) max|α|≤2

∣∣∂αw(x)
∣∣≤ c

(
1 + |x|)−γ

.

Then there exists a random variable D(w) such that, as n → ∞,

N�(�n,f + w) − N�(�n, f̃0)
a.s.−−→ D(w).

Moreover,

E
[
D(w)

]= lim
n→∞E

[
N(�n,f + w)

]−E
[
N(�n,f )

]
,

and E[D(w(·))] = E[D(w(x + ·))] for any x ∈ R
d .

REMARK 3.14. In particular, w = q ∗ 1D satisfies (3.35) for any compact D.

PROOF. Recall that p0 = f̃0 − f . Define the (random) unstable subset

U1 = {
v ∈ Z

d : (f̃0,w − p0) is unstable on Bv

}
.

By Lemma 2.4, for every ε > 0 there are cε, c > 0 such that

P(v ∈ U1) ≤ cε inf
τ>‖w‖

C1(v+�2)
+c

√
Mv

(
τ 1−ε + e

−(τ−c
√

Mv−‖w‖
C1(v+�2)

)2/(2Mv))
,

where, as shown in the proof of Lemma 3.6, Mv ≤ c1(1 + |v|)−2β . For some η > 0, we now
choose

τ = c2
(
1 + |v|)−min{β,γ }+η ≥ 2

(
c
√

Mv + ‖w‖C1(v+�2)

)
,
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where the inequality holds for an appropriate choice of constant c2 > 0. We then have

P(v ∈ U1) ≤ c3
((

1 + |v|)−(min{β,γ }−η)(1−ε) + e−c4(1+|v|)2η)
for some c3, c4 > 0 depending on ε. Choosing η, ε > 0 small enough, we can ensure that
this expression is bounded by cδ(1 + |v|)−min{β,γ }+δ for any δ > 0. Since this expression is
summable over v ∈ Z

d , arguing as in the proof of Lemma 3.9, we see that

N�(�n,f + w) − N�(�n, f̃0)

converges almost surely as n → ∞, proving the first statement.
Turning to the second statement, by Lemma 2.2 (applied to g = f̃0 and p = w − p0),∣∣N�(�n,f + w) − N�(�n, f̃0)

∣∣≤ ∑
v∈Zd

(
Nc(Bv,f + w) + Nc(Bv, f̃0)

)
1v∈U1 .

Then by Hölder’s inequality, Theorem 1.6, and the fact that min{β,γ } > 3d/2,

E

[∑
v∈Zd

(
Nc(Bv,f + w) + Nc(Bv, f̃0)

)
1v∈U1

]

≤ ∑
v∈Zd

E
[(

Nc(Bv,f + w) + Nc(Bv, f̃0)
)3]1/3

P(v ∈ U1)
2/3

≤ c
∑
v∈Zd

(
1 + |v|)− 2

3 (min{β,γ }−δ)
< ∞

for c > 0 depending only on f and ‖w‖C4(Rd ), where we have taken δ > 0 sufficiently small
to ensure that the sum is finite. Thus, |N�(�n,f + w,�) − N�(�n, f̃0, �)| is dominated by
a quantity with finite expectation, so by the dominated convergence theorem and equality in
law of f̃0 and f ,

E
[
D(w)

]= lim
n→∞E

[
N(�n,f +w)−N(�n, f̃0)

]= lim
n→∞E

[
N(�n,f +w)

]−E
[
N(�n,f )

]
,

as required. The final claim follows by stationarity, since the argument for the existence of
D(w) in the proof of Lemma 3.9 shows that D(w) is unchanged if �n is replaced by �n − x.

�

Let us next give a sufficient condition for σ > 0. Later we will verify (a rescaled version
of) this sufficient condition under the additional assumption that

∫
q > 0.

LEMMA 3.15. Suppose there exists a set I ⊂ R of positive measure such that, for all
s ∈ I ,

(3.36) lim
n→∞E

[
N�

(
�n,f + s(q ∗ 1B0), �

)]−E
[
N�(�n,f, �)

]
< 0.

Then σ > 0.

PROOF. Consider an orthogonal decomposition of the white noise W |B0 into the Gaus-
sian function Z01(·)|B0 and an orthogonal part, where Z0 is a standard normal random vari-
able, and observe that Z0 is measurable with respect to F0. Define the function

F(z) = E
[
�0
(
R

d)|Z0 = z
]
.

Then by Jensen’s inequality,

σ 2 = E
[
E
[
�0
(
R

d)|F0
]2]≥ Var

[
F(Z0)

]
.
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On the other hand, for every s ∈R, by definition

E
[
F(Z0 + s)

]= E
[
D(s(q ∗ 1B0)

]
.

Hence, by Lemma 3.13 and (3.36), E[F(Z0 + s)] < 0 on a set s ∈ I of positive measure,
which implies that Var[F(Z0)] > 0 as required. �

Towards verifying (3.36), let us collect some facts about the component count density
μ = μ�(�) in (1.1).

LEMMA 3.16. The following hold:

1. For all � ∈ R, μ�(�) > 0.
2. As � → ∞, μ�(�) → 0.
3. For all � ∈ R, E[N�(�n,f, �)]/nd → μ�(�) as n → ∞.

PROOF. (1). By Lemma A.1, the support of the spectral measure of f contains an open
set. By [38], Appendix C.2 and Theorem 1, this ensures that μLS(0) > 0, and the proof of
this result applies equally well to all � ∈ R for both excursion and level sets.

(2). We first claim that

(3.37) μ�(�) ≤ E
[
Nc

(
�1, f, [�,∞)

)]
,

where Nc(�1, f, [�,∞)) denotes the number of critical points of f in �1 with level at least �.
To see this, observe that N�(�n,f, �) is bounded by the number of stratified critical points of
f in �n with height at least �. This is a standard consequence of Morse theory: when raising
the level, the topology of the excursion/level set can only change upon passing through a
stratified critical point and for each such point the component count can change by at most
one. Moreover, when the level is sufficiently high, the excursion/level set is empty so we
must have passed through at least one critical point for each component. (See [21] for a
comprehensive background on the Morse theory of stratified spaces or [24] for a concise
introduction.) Since the expected number of stratified critical points in a boundary stratum of
�n scales like nk where k ∈ {0,1, . . . , d −1} is the dimension of the stratum, by the definition
of μ� and stationarity of critical points we have (3.37). To complete the proof, we claim that

E
[
Nc

(
�1, f, [�,∞)

)]→ 0

as � → ∞. Indeed Nc(�1, f, [�,∞)) → 0 almost surely, and Nc(�1, f, [�,∞))≤Nc(�1, f ),
which has finite expectation. Then the claim follows from the dominated convergence theo-
rem.

(3). This follows immediately from the L1 convergence in (1.1). �

We can now complete the proof of Theorem 1.3.

PROOF OF THEOREM 1.3. Observe that one can run the proof of the CLT by decompos-
ing the white noise W over any lattice mZ

d , m ∈ N, in place of Zd , and the limiting variance
must be the same. Hence, by Lemma 3.15 it is enough to find a sufficiently large m ∈ N and
a set I of positive measure such that, for all s ∈ I ,

lim
n→∞E

[
N�

(
�n,f + s

(
q ∗ (2mB0)

))]−E
[
N�(�n,f )

]
< 0.

Since
∫
Rd q(x) dx > 0 by assumption, it is sufficient for us to verify the above condition with

q := q/
∫
Rd q(x) dx replacing q . Moreover, by stationarity we may replace 2mB0 with �m.
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By the first two points of Lemma 3.16, there exists an open interval I and η > 0 such that
μ�(� − s) − μ�(�) < −7η for all s ∈ I . Henceforth, we fix such an s ∈ I . By the third point
of Lemma 3.16, as k → ∞,

E
[
N�(�k,f + s)

]
/kd → μ�(� − s) and E

[
N�(�k,f )

]
/kd → μ�(�).

Combining these observations, for k sufficiently large,

(3.38) E
[
N�(�k,f + s)

]−E
[
N�(�k,f )

]
< −6ηkd.

We now state three claims, which will be combined to prove the theorem. We let
w := wm := sq � 1�m , and observe that ‖w‖C4(Rd ) ≤ |s|max|α|≤4 ‖∂αq‖L1(Rd ) is uniformly
bounded over m. Set k = m − �√m� (although from the proof it will be apparent that we
could choose k = m− r for any 1 � r � m). We claim that for some m sufficiently large and
all n > m,

E
[∣∣N�(�n,g) − N�(�k, g) − N�(�n \ �k,g)

∣∣]≤ ηkd−1 ≤ ηmd for g = f,f + w,(3.39)

E
[∣∣N�(�k,f + w) − N�(�k,f + s)

∣∣]≤ ηmd,(3.40)

E
[∣∣N�(�n \ �k,f + w) − N�(�n \ �k,f )

∣∣]≤ ηmd.(3.41)

To explain the intuition behind (3.39)–(3.41), recall that components inside �n are either
inside �k , inside �n \�k , or hit the boundary of �k . Roughly speaking, (3.39) means that the
expected number of components of the third type is negligible (compared to the volume of
�m), (3.40) means that w is almost a constant on �k , so the expected number of components
of the first type is indifferent as to whether we perturb by w or by a constant, and (3.41)
means that perturbation by w has negligible effect on components of the second type.

Combining these equations with (3.38), the triangle inequality, and the fact that k/m → 1
immediately gives for m sufficiently large, and all n > m,

E
[
N�

(
�n,f + s(q̄ ∗ 1�m)

)]−E
[
N�(�n,f )

]
< −ηmd,

completing the proof of the theorem.
It remains to verify claims (3.39)–(3.41). In the sequel, c′ > 0 will denote a constant that

depends only on f and s and may change from line to line. Observe that each component of
g = f,f + w inside �n must either be contained in �k , be contained in �n \ �k or intersect
∂�k . The number of components intersecting ∂�k is dominated by the number of critical
points of g restricted to the boundary, therefore,∣∣N�(�n,g) − N�(�k, g) − N�(�n \ �k,g)

∣∣≤ Nc(∂�k, g).

By Jensen’s inequality applied to Theorem 1.6, the expectation of the right-hand side here is
at most c′kd−1, verifying (3.39).

As in the proof of Lemma 3.13, by Lemma 2.2, Hölder’s inequality and Theorem 1.6,

(3.42)

E
[∣∣N�(�k,f + w) − N�(�k,f + s)

∣∣]
≤ ∑

v∈Zd∩�k

E
[(

Nc(Bv,f + s) + Nc(Bv,f + w)
)3] 1

3P(v ∈ U2)
2
3

≤ c′ ∑
v∈Zd∩�k

P(v ∈ U2)
2
3 ≤ c′md sup

v∈Zd∩�k

P(v ∈ U2)
2
3 ,

where

U2 := {
v ∈ Z

d : (f,w − s) is unstable on Bv at level � − s
}
.



906 D. BELIAEV, M. MCAULEY AND S. MUIRHEAD

We claim that ∫
Rd

q(u) du = 1 and
∫
Rd

∂αq(u) du = 0 for |α| = 1.

The first property just follows from q being defined as the normalisation of q whilst the
second follows from the decay of q . For x ∈ �k and |α| ≤ 1, we then have∣∣∂α(w(x) − s

)∣∣= |s|
∣∣∣∣∫

�m

∂αq(x − u)du −
∫
Rd

∂αq(x − u)du

∣∣∣∣≤ |s|
∫
Rd\�√

m

∣∣∂αq(u)
∣∣du

≤ c′m−(β−d)/2.

Hence, ‖w−s‖C1(v+�2)
≤ c′m−(β−d)/2 for v ∈ �k , and so by Lemma 2.4, for every ε > 0 we

have P(v ∈ U2) ≤ cεm
−(1−ε)(β−d)/2. Since β > d , combining this with (3.42) proves (3.40).

Repeating the arguments to justify (3.42) shows that

(3.43) E
[∣∣N�(�n \ �k,f + w) − N�(�n \ �k,f )

∣∣]≤ c′ ∑
v∈Zd∩(�n\�k)

P(v ∈ U3)
2
3 ,

where

U3 := {
v ∈ Z

d : (f,w) is unstable on Bv at level �
}
.

For x ∈ R
d and a multi-index α such that |α| ≤ 1,∣∣∂αw(x)
∣∣= ∣∣∣∣∫

�m

∂αq(x − u)du

∣∣∣∣≤ ∫|u|>dist(x,�m)

∣∣∂αq(u)
∣∣du ≤ c′(1 + dist(x,�m)

)−β+d
.

Therefore, by Lemma 2.4

P(v ∈ U3) ≤ cε

(
1 + dist(v,�m)

)−(1−ε)(β−d)

for any ε > 0. Hence, by Lemma 3.8, (3.43) is bounded above by∑
v∈Zd\�m−√

m

P(v ∈ U3)
2/3 ≤ c′md− 1

2 + ∑
v∈Zd\�m+√

m

cε

(
1 + dist(v,�m)

)− 2(1−ε)
3 (β−d)

≤ c′md− 1
2 + c

(
m− (1−ε)

3 (β−d)+d/2 + md−1− (1−ε)
3 (β−d)+1/2)

≤ c′md− 1
2

for ε > 0 sufficiently small, since β > 5d/2. Combined with (3.43), this verifies (3.41) and
thus completes the proof of the theorem. �

REMARK 3.17. It is interesting to note that the proof of Theorem 1.3 only requires that
Assumption 1.1 holds for β > 5d/2 (taking (3.34) as the definition of σ ). Moreover, if one
knew that the conclusion of Theorem 1.6 (including the uniformity over ‖p‖ ≤ τ ) held for
all higher order moments then the above proof would require only β > d . This suggests that
a similar strategy could show that Var[N�(R, �)] is of at least volume order for all β > d .

4. Analysis of critical points. In this section, we prove the third moment bound on
critical points in Theorem 1.6. The proof exploits the ‘divided difference’ method, which
originated in [13, 15] for studying zeros of one-dimensional Gaussian processes and was
used recently in [3] to prove quite comprehensive results in this setting. We introduce this
technique in Section 4.2. In principle, our analysis could be extended to moments of higher
order, although this would require more technical arguments (and stronger assumptions on
the field).
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4.1. Reduction to a bound on the three-point intensity of critical points. We first reduce
the proof of Theorem 1.6 to a pointwise bound on critical point intensities.

Henceforth, we assume that f satisfies Assumption 1.5 and p ∈ C4(Rd). We abbreviate
F = f + p, and recall that Nc(R) = Nc([−R,R]d) denotes the number of critical points of
F in �R = [−R,R]d . By the Kac–Rice theorem (see [1], Chapter 11, or [5], Chapter 6, for
background), for every R > 0,

(4.1) E
[
Nc(R)

(
Nc(R) − 1

)(
Nc(R) − 2

)]= ∫
x,y,z∈�R

J (x, y, z) dx dy dz,

where J (x, y, z) is the three-point intensity function

J (x, y, z) = ϕ(x, y, z) × Ẽ
[∣∣det

(∇2F(x)∇2F(y)∇2F(z)
)∣∣]

and Ẽ denotes the expectation under the conditioning

(4.2)
(∇F(x),∇F(y),∇F(z)

)= (0,0,0),

with ϕ(x, y, z) the corresponding Gaussian density. This formula is valid since f is C2-
smooth and (∇f (x),∇f (y),∇f (z)) is nondegenerate for distinct x, y, z (see Lemma A.2).

A priori J (x, y, z) may diverge on the diagonal (i.e., as x, y → z or x − y → 0, etc.), but
the following bound provides sufficient integrability. We define

D = {
(x, y) ∈ R

2d |0 < |x| < |y| < |x − y| ≤ 1
}
.

PROPOSITION 4.1. There exists c > 0, depending only on f , such that, for all (x, y) ∈
D,

J (x, y,0) ≤ c
(
1 + ‖p‖C4(Rd )

)3d |x|−d+1|y|−d+1(|y| + sin θ
)−d+1(√|y| + sin θ

)
,

where θ ∈ [π/3, π] denotes the angle between x and y.

REMARK 4.2. Throughout this section, in the case that d = 1 we take θ = π identi-
cally. All of our later calculations will be valid with this convention (although many formulae
simplify considerably in this case).

PROOF OF THEOREM 1.6 GIVEN PROPOSITION 4.1. By Hölder’s inequality, for every
R ≥ 1 and ε ∈ (0,1] we have

(4.3)

E
[
Nc(R)3]≤ E

[( ∑
x∈2εZd∩�2R

Nc(x + �ε)

)3]

= ∑
x,y,z∈2εZd∩�2R

E
[
Nc(x + �ε)Nc(y + �ε)Nc(z + �ε)

]
≤ (3Rε−1)3d sup

a∈Rd

E
[
Nc(a + �ε)

3].
We henceforth fix ε = 1/

√
d .

Next, we observe that, since f is stationary,

J (x, y, z) = J̃ (x − z, y − z,0),

where J̃ is defined analogously to J when p(·) is replaced by p(z + ·). Using the fact that
‖p(z+·)‖C4(Rd ) = ‖p‖C4(Rd ), we deduce from Proposition 4.1 that for all (x −z, y −z) ∈ D,

J (x, y, z) ≤ c1|x − z|−d+1|y − z|−d+1(|y − z| + sin θ
)−d+1(√|y − z| + sin θ

)
,
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where θ ∈ [π/3, π] denotes the angle between x − z and y − z, and c1 > 0 depends only on
f and p.

Then by the Kac–Rice formula (4.1),

(4.4)

E
[
Nc(ε)

(
Nc(ε) − 1

)(
Nc(ε) − 2

)]= ∫
x,y,z∈�ε

J (x, y, z) dx dy dz

≤ c2

∫
|x−z|<|y−z|<|x−y|≤1

J (x, y, z) dx dy dz

≤ c3

∫
|u|<|v|≤1

|u|−d+1|v|−d+1(|v| + sin θ
)−d+1

× (√|v| + sin θ
)
dudv,

where θ ∈ [0, π] is the angle between u and v. In the second line, we integrated over configu-
rations where (x, y) is the longest side of the triangle with vertices x, y and z. Other integrals
of this type are obtained by relabeling variables and are of the same order. When d = 1, we
observe that the integrand here is bounded, completing the proof in this case.

Assuming now that d ≥ 2, we switch to spherical coordinates for u; for each fixed value
of v, we choose a basis for u in which the final coordinate is in the direction v and we then
define r > 0, θ1 ∈ [0,2π) and θ2, . . . , θd−1 ∈ [0, π] by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = r

d−1∏
k=1

sin θk,

um = r cos θm−1

d−1∏
k=m

sin θk for m = 2, . . . , d − 1,

ud = r cos θd−1.

Our choice of basis implies that θd−1 is equal to θ , the angle between u and v. The Jacobian
for spherical coordinates is given by

(−r)d−1
d−1∏
k=2

sink−1 θk

and so the integral in (4.4) is bounded by

c4

∫
|v|≤1

|v|−d+1
∫ |v|

0

∫ π

0

(
sin θ

|v| + sin θ

)d−2 √|v| + sin θ

|v| + sin θ
dθ dr dv ≤ c5

∫
|v|≤1

|v|−d+3/2 dv,

where we have used the bound
√|v|+sin θ
|v|+sin θ

≤ √|v|/|v|. Since the above expression is finite, we
see that E[Nc(ε)(Nc(ε) − 1)(Nc(ε) − 2)] is bounded by a constant depending only on the
distribution of f and the norm of p. Moreover, the same is true if we replace �ε by a + �ε

since the distribution of f and the norm of p are translation invariant. Since, for any positive
random variable X,

E
[
X3]= E

[
X31X≤6

]+E
[
X31X≥6

]≤ 63 + 2E
[
X(X − 1)(X − 2)

]
,

combining with (4.3) we have the desired result. �

REMARK 4.3. This proof shows that the constant c in Theorem 1.6 is at most
c′(1 + ‖p‖C4(Rd ))

3d , for c′ > 0 depending only on f .
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4.2. Overview of the divided difference method; a second moment bound for zeros. We
prove Proposition 4.1 using the divided difference method, which we present here in a simpler
setting. Suppose we want to bound the second moment of the number of zeros of a Gaussian
process F = f +p, where f is a C2-smooth stationary Gaussian process and p ∈ C2(R). We
will show that, as long as the spectral measure of f has more than two points in its support
(to ensure sufficient nondegeneracy),

(4.5) E
[
N(R)2]≤ c

(
1 + ‖p‖C2(R)

)2
R2,

where N(R) = |{x ∈ [0,R] : F(x) = 0}| is the number of zeros of F in [0,R], and c > 0
depends only on the law of f . Although the bound E[N(R)2] ≤ cR2 is classical (see [31]),
we are not aware of any existing results on the dependence of the constant on p.

Using the Kac–Rice formula as above (valid since (f (x), f (y)) is nondegenerate for
x �= y), it is sufficient to prove that, for x, y ∈ [0,1],
(4.6) J (x, y) ≤ c

(
1 + ‖p‖C2(R)

)2
,

where

J (x, y) = ϕ(x, y) ×E
[∣∣F ′(x)F ′(y)

∣∣|(F(x),F (y)
)= (0,0)

]
and ϕ(x, y) is the Gaussian density of (F (x),F (y)) at (0,0). Note that the intensity J (x, y)

factorises into a Gaussian density ϕ, which diverges as x − y → 0, and a contribution from
the gradients which one expects to be small as x − y → 0. To ensure integrability, one needs
to carefully control these terms on the diagonal.

The essence of the divided difference method is the observation that, to make the behaviour
on the diagonal more amenable, it is helpful to replace the vector (F (x),F (y)) with the vector
(F (x),Dx,y(F )), where

Dx,y(F ) =
⎧⎪⎨⎪⎩

F(y) − F(x)

y − x
x �= y,

F ′(x) x = y.

We first show that

(4.7) ϕ(x, y) ≤ c|y − x|−1

for all x, y ∈ [0,1] and a constant c > 0 depending only on f .
For a square-integrable random vector X, let DC(X) denote the determinant of its covari-

ance matrix. Clearly,

ϕ(x, y) ≤ (2π)−1DC
(
f (x), f (y)

)−1/2
.

Moreover, by standard properties of the DC operator (see Lemma 4.6)

DC
(
f (x), f (y)

)= |x − y|2DC
(
f (x),Dx,y(f )

)
.

Since f is C1-smooth, as y → x,

Dx,y(f ) = f (y) − f (x)

y − x
→ f ′(x)

almost surely (and so in L2), and hence we infer that (again see Lemma 4.6), as y → x,

DC
(
f (x),Dx,y(f )

)→ DC
(
f (x), f ′(x)

)
.

Since (f (x), f ′(x)) is nondegenerate (in fact they are independent by stationarity), by conti-
nuity and compactness we have (4.7).
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We next show that

(4.8) E
[∣∣F ′(x)F ′(y)

∣∣|(F(x),F (y)
)= (0,0)

]≤ c
(
1 + ‖p‖C2(R)

)2|y − x|
for all x, y ∈ [0,1]. Combined with (4.7), this completes the proof of (4.6), and hence (4.5).

By a Taylor expansion, for z = x, y,∣∣F ′(z) − Dx,y(F )
∣∣≤ |y − x|1/2‖F‖C3/2([0,1]).

Hence, using standard properties of Gaussian conditioning (see Lemma 4.7),

E
[∣∣F ′(z)

∣∣2∣∣(F(x),F (y)
)= (0,0)

]= E
[∣∣F ′(z)

∣∣2|(F(x),Dx,y(F )
)= (0,0)

]
= E

[∣∣F ′(z) − Dx,y(F )
∣∣2|(F(x),Dx,y(F )

)= (0,0)
]

≤ |y − x| ·E[‖F‖2
C3/2([0,1])|

(
F(x),Dx,y(F )

)= (0,0)
]
.

Applying the Cauchy–Schwarz inequality to (4.8), it remains to prove that

E
[‖F‖2

C3/2([0,1])|
(
F(x),Dx,y(F )

)= (0,0)
]≤ c

(
1 + ‖p‖C2(R)

)2
.

For this, it is sufficient that (see the proof of Lemma 4.10 below for details)

(4.9) sup
z,x,y∈[0,1]

sup
|α|≤2

Var
[
∂αF (z)|(F(x),Dx,y(F )

)= (0,0)
]≤ c1

and

(4.10) sup
z,x,y∈[0,1]

sup
|α|≤2

∣∣E[∂αF (z)|(F(x),Dx,y(F )
)= (0,0)

]∣∣≤ c2‖p‖C2(R).

Since conditioning can only reduce the variance of a Gaussian variable, and by stationarity,

Var
[
∂αF (z)|(F(x),Dx,y(F )

)= (0,0)
]≤ Var

[
∂αF (z)

]= Var
[
∂αf (0)

]
,

which proves (4.9). Moreover, using Gaussian regression and the fact that various covariances
involving F are the same as the corresponding covariances for f ,

E
[
∂αF (z)|(F(x),Dx,y(F )

)= (0,0)
]

= ∂αp(z) − Cov
[
∂αf (z),

(
f (x)

Dx,y(f ))

)]t
Cov

[
f (x),Dx,y(f )

]−1(
p(x),Dx,y(p)

)
.

By an argument similar to that following (4.7), since (f (0), f ′(0)) is nondegenerate the spec-
tral norm of Cov[f (x),Dx,y(f )]−1 is uniformly bounded. Since also Dx,y(g) ≤ ‖g‖C2([0,1])
for g = f,p, we deduce (4.10).

4.3. Bound on the three-point intensity. We now complete the proof of Proposition 4.1,
for which we use a natural extension of the above approach to higher order derivatives. We
shall prove the following two bounds.

LEMMA 4.4. There exists a c > 0 such that, for all (x, y) ∈D,

DC
(∇f (0),∇f (x),∇f (y)

)≥ c|x|2d |y|2(d+1)(|y| + sin θ
)2(d−1)

,

where θ ∈ [π/3, π] denotes the angle between x and y.

LEMMA 4.5. There exists a c > 0 such that, for all (x, y) ∈D,

E
[∣∣det

(∇2F(0)∇2F(x)∇2F(y)
)∣∣|(∇F(0),∇F(x),∇F(y)

)= (0,0,0)
]

≤ c
(
1 + ‖p‖C4(Rd )

)3d |x||y|2(√|y| + sin θ
)
,

where θ ∈ [π/3, π] denotes the angle between x and y.
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PROOF OF PROPOSITION 4.1. Since

ϕ(x, y,0) ≤ (2π)−3d/2DC
(∇f (0),∇f (x),∇f (y)

)−1/2
,

combining Lemmas 4.4 and 4.5 gives the result. �

We now turn to proving Lemmas 4.4 and 4.5. To begin, we collect some properties of the
DC operator.

LEMMA 4.6. Let X and Y be square-integrable random vectors of dimensions m1 and
m2, respectively. Then:

1. For A ∈R
m1×m1 ,

DC(AX) = det(A)2DC(X).

In particular, for a ∈ R and B ∈ R
m1×m2

DC(aX,Y ) = a2m1DC(X,Y ) and DC(X + BY,Y ) = DC(X,Y ).

2. If DC(X,Y ) > 0, then DC(X) > 0.
3. If Xn is a sequence converging to X in L2, then DC(Xn) → DC(X).

PROOF. The first item is immediate from the definition

Cov[X] = E
[
(X −EX)(X −EX)t

]
,

the second item is elementary, and the third item follows from the continuity of the determi-
nant operator. �

We also collect some standard properties of (Gaussian) conditioning:

LEMMA 4.7. Let (X,Y ) be an (n + 1)-dimensional nondegenerate Gaussian random
vector. Then:

1. Let H :R →R be continuous and satisfy |H(t)| ≤ C(1 + |t |)m for some C,m > 0 and
all t ∈R. For a ∈R

n,

E
[
H(Y)|X = 0

]= E
[
H(Y − a · X)|X = 0

]
.

2. If A ∈ R
n×n is invertible, then for every x ∈R

n,

E[Y |X = x] = E[Y |AX = Ax].

These properties do not really rely on X and Y being Gaussian; the proof below shows
that it is enough for these variables to have a sufficiently nice joint density.

PROOF. Let p(u, v) denote the joint density of (X,Y ) and Bε(x) denote the ball of radius
ε centred at x, then

E
[
H(Y − a · X)|X = x

]= lim
ε→0

∫
Bε(x)

∫
R

H(v − a · u)p(u, v) dv du∫
Bε(x)

∫
R

p(u, v) dv du

=
∫
R

H(v − a · x)p(x, v) dv∫
R

p(x, v) dv
,

where the final equality follows from applying the dominated convergence theorem to the
numerator and denominator. When x = 0, the above limit is the same for all a ∈ R

n (including
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a = 0), proving the first item. By the same dominated convergence argument, the above limit
is unchanged if we replace Bε(x) by {u ∈ R

n||Au − Ax| ≤ ε}. This proves the second item
on setting a = 0 and H(Y) = Y . �

The next lemma contains the essence of the divided difference method. It shows
that, after appropriate linear transformation (analogous to the mapping (f (x), f (y)) �→
(f (x),Dx,y(f )) described in Section 4.2), the vector (∇f (0),∇f (x),∇f (y)) converges
to a nondegenerate Gaussian vector as x, y → 0.

Recall that

D = {
(x, y) ∈ R

2d |0 < |x| < |y| < |x − y| ≤ 1
}
,

and for any g ∈ C4(�1) let G3
0,x(g) denote the vector (∂αg(z)||α| ≤ 3, z ∈ {0, x}).

LEMMA 4.8. Let (xn, yn) be any sequence in D converging to (0, y) for some y (possibly
equal to zero). There exists a subsequence nk , a sequence of matrices Mk ∈ R

3d×3d , and a
matrix M , such that:

1. detMk = |xnk
|−d |ynk

|−d−1(|ynk
| + sin θnk

)−d+1, where θnk
∈ [π/3, π] denotes the an-

gle between xnk
and ynk

.
2. For any g ∈ C4(�1), as k → ∞,

Mk

(∇g(0),∇g(xnk
),∇g(ynk

)
)t − MG3

0,y(g) = o
(‖g‖C4(�1)

)
.

3. MG3
0,y(f ) is a nondegenerate Gaussian vector.

REMARK 4.9. The intuition behind this lemma is that MG3
0,y(f ) will be related to one

of the four Gaussian vectors in Remark 1.8 (which are known to be nondegenerate) and the
matrices Mk will be chosen so that Mk(∇g(0),∇g(xnk

),∇g(ynk
))t is a Taylor expansion for

MG3
0,y(g). The choice of vector (and matrices) will depend on the sequence (xn, yn) and so

rather than give several different cases above, we prefer to state the lemma in an abstract way.

PROOF. By compactness of [π/3, π], we may pass to a subsequence θnk
for which

θnk
→ θ ∈ [π/3, π]. For notational clarity, we will denote the subsequence by θn (and the

matrices in the statement of the lemma will be denoted by Mn). Similarly, we may assume
the following convergence:

x̂n := xn

|xn| → v1 ∈ S
d−1, ŷn := yn

|yn| → v2 ∈ S
d−1,

|xn|
|yn| → α ∈ [0,1],

ŵn :=
{ ŷn−cos(θn)x̂n

sin(θn)
if θn �= π

0 if θn = π

}
→ v3 ∈ S

d−1 ∪ {0}, and
sin θn

|yn| → β ∈ [0,∞].
(4.11)

There are now two different cases to consider: (i) y = 0, and (ii) y �= 0.
Case (i). y = 0. We take g ∈ C4(�1), and define Mn as the matrix, which results in the

following row operations:

⎛⎝ ∇g(0)

∇g(xn)

∇g(yn)

⎞⎠→

⎛⎜⎜⎜⎜⎜⎝
∇g(0)

∇g(xn) − ∇g(0)

|xn|
∇g(yn) − ∇g(0)

|yn|

⎞⎟⎟⎟⎟⎟⎠
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→

⎛⎜⎜⎜⎜⎜⎝
∇g(0)

∇g(xn) − ∇g(0)

|xn|(
1

|yn| + sin θn

(
I − x̂nx̂

t
n

)+ 1

|yn| x̂nx̂
t
n

)∇g(yn) − ∇g(0)

|yn|

⎞⎟⎟⎟⎟⎟⎠
→
(
∇g(0),

∇g(xn) − ∇g(0)

|xn| , Sn

)t

,

where

(4.12)

Sn := (
I − x̂nx̂

t
n

) 1

|yn| + sin θn

(∇g(yn) − ∇g(0)

|yn| − cos θn

∇g(xn) − ∇g(0)

|xn|
)

+ 1

|yn|
(
x̂n · ∇g(yn) − ∇g(0)

|yn| − ŷn · ∇g(xn) − ∇g(0)

|xn|
)
x̂n.

The first statement of the lemma follows from these row operations and noting that

det
(

1

|yn| + sin θn

(
I − x̂nx̂

t
n

)+ 1

|yn| x̂nx̂
t
n

)
= |yn|−1(|yn| + sin θn

)−d+1
.

By a Taylor expansion, for |xn| < 1 we have∣∣∣∣∇g(xn) − ∇g(0)

|xn| − ∂x̂n
∇g(0)

∣∣∣∣≤ c′|xn|‖g‖C4(�1)
,

where c′ is an absolute constant. Using the fact that x̂n → v1,∣∣∣∣∇g(xn) − ∇g(0)

|xn| − ∂v1∇g(0)

∣∣∣∣≤ c′(|xn| + |x̂n − v1|)‖g‖C4(�1)
= o

(‖g‖C4(�1)

)
.

Similarly, by a Taylor expansion we have

(4.13)
∣∣∣∣∇g(yn) − ∇g(0)

|yn| − cos(θn)
∇g(xn) − ∇g(0)

|xn| − Tn

∣∣∣∣≤ c′|yn|2‖g‖C4(�1)
,

where

Tn = sin(θn)∂ŵn
∇g(0) + |yn|

2
∂2
ŷn

∇g(0) − |xn|
2

cos(θn)∂
2
x̂n

∇g(0)

(note that if ŵn = 0 then we take ∂ŵn
to be the identically zero operator). Using the conver-

gence in (4.11), we see that

Tn

|yn| + sin θn

= β

β + 1
∂v3∇g(0) + 1 + α

2(β + 1)
∂2
v1

∇g(0) + o
(‖g‖C4(�1)

)
as n → ∞. By Taylor expanding the second part of (4.12) analogously, we see that

Sn = S + o
(‖g‖C4(�1)

)
,

where S is defined as(
I − v1v

t
1
)( β

β + 1
∂v3∇g(0) + 1 + α

2(β + 1)
∂2
v1

∇g(0)

)
+ 1

2

(
∂2
v2

∂v1g(0) − α∂v2∂
2
v1

g(0)
)
v1.

Hence, choosing M such that

(4.14) MG3
0,y(g) = (∇g(0), ∂v1∇g(0), S

)
proves the second point of the lemma (for the case y = 0).
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We now let g = f and choose an orthonormal basis u1, . . . , ud of Rd such that u1 = v1
and if v3 �= 0 then u2 = v3. By the first point of Lemma 4.6, the degeneracy of the Gaussian
vector on the right-hand side of (4.14) is unchanged if we multiply each of the terms ∇g(0),
∂v1∇g(0) and S by the orthogonal matrix A with ith row equal to ui . Note that the effect of
this multiplication on the first two terms is equivalent to changing the basis for the gradient
operator (i.e., A∇ = (∂u1, . . . , ∂ud

)). Since Av1 = (1,0, . . . ,0)t , we see that when β = ∞,
the right-hand side of (4.14) is nondegenerate if and only if

DC
(
A∇f (0), ∂u1A∇f (0),

1

2

(
∂u1∂

2
v2

f (0) − α∂2
u1

∂v2f (0)
)
, ∂u2∂u2f (0), . . . , ∂u2∂ud

f (0)

)
is nonzero, which holds by the fourth point of Remark 1.8 about the nondegeneracy of various
partial derivatives of f (and the first two points of Lemma 4.6).

If β < ∞, then θn → π and so v2 = −v1. In this case, by the first two points of Lemma 4.6,
we see that the right-hand side of (4.14) is nondegenerate provided that

DC
(
A∇f (0), ∂u1A∇f (0), ∂3

u1
f (0), ∂2

u1
∂u2f (0), . . . , ∂2

u1
∂ud

f (0)
)

is positive. This holds by the third point of Remark 1.8 and the second point of Lemma 4.6,
which completes the proof for y = 0.

Case (ii). y �= 0. Now we let Mn be defined by the following sequence of row operations:

⎛⎝ ∇g(0)

∇g(xn)

∇g(yn)

⎞⎠→

⎛⎜⎜⎝
∇g(0)

∇g(xn) − ∇g(0)

|xn|∇g(yn)

⎞⎟⎟⎠→

⎛⎜⎜⎜⎝
∇g(0)

∇g(xn) − ∇g(0)

|xn|
|yn|− d+1

d
(|yn| + sin θn

)− d−1
d ∇g(yn)

⎞⎟⎟⎟⎠
and we again see that Mn has the correct determinant, proving the first statement of the
lemma. By a Taylor expansion, the above expression differs from(∇g(0), ∂v1∇g(0), |y|− d+1

d
(|y| + sin θ

)− d−1
d ∇g(y)

)t
by a term which is o(‖g‖C4(�1)

) proving the second statement of the lemma. When g = f ,
the second point of Remark 1.8 implies that the above Gaussian vector is nondegenerate,
proving the final statement of the lemma. �

PROOF OF LEMMA 4.4. Define

A(x, y) = |x|−2d |y|−2d−2(|y| + sin θ
)−2d+2DC

(∇f (0),∇f (x),∇f (y)
)
.

Since A(x, y) is continuous and strictly positive on D (by the first point of Remark 1.8), and
D is compact, it suffices to show that lim infn A(xn, yn) > 0 for any sequence (xn, yn) ∈ D
converging to (x, y) ∈ ∂D.

For the sake of contradiction, suppose (xn, yn) → (x, y) ∈ ∂D is such that A(xn, yn) → 0.
By Lemma 4.8, we may pass to a subsequence nk and find matrices M , Mk such that for any
g ∈ C4(�1),

Mk

(∇g(0),∇g(xnk
),∇g(ynk

)
)t → MG3

0,y(g).

In particular, this holds almost surely for g = f . Since f is Gaussian, the convergence oc-
curs also in L2. Then by the third point of Lemma 4.6 (and the expression for detMk in
Lemma 4.8),

A(xnk
, ynk

) = (detMk)
2DC

(∇f (0),∇f (xnk
),∇f (ynk

)
)→ DC

(
MG3

0,y(f )
)
.

By the third point of Lemma 4.8, the latter expression is strictly positive, yielding a contra-
diction. �

A final ingredient in the proof of Lemma 4.5 is a uniform bound on the conditional mo-
ments of F .
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LEMMA 4.10. For each k ∈ N and ε ∈ (0,1), there exists c > 0 depending only on the
distribution of f such that, for any (x, y) ∈ D,

(4.15) E
[‖F‖k

C4−ε(�1)
|∇F(0) = ∇F(x) = ∇F(y) = 0

]
< c

(
1 + ‖p‖C4(�1)

)k
.

PROOF. Kolmogorov’s theorem [38], Sections A.9, A.11.1, states that for any centred
C4-smooth Gaussian field h there exists a c > 0, depending on k and ε, such that

E
[‖h‖k

C4−ε(�1)

]≤ c
(

sup
|α|,|β|≤4

sup
z1,z2∈�2

∣∣∂α
z1

∂β
z2

Cov
[
h(z1), h

(
z2
]∣∣)k/2

.

By the Cauchy–Schwarz inequality, the latter expression is bounded above by

c
(

sup
|α|≤4

sup
z∈�2

Var
[
∂αh(z)

])k/2
.

If we now allow h to be a noncentred C4 Gaussian field, then by the triangle inequality, for
each k ∈ N and ε > 0 there exists a c > 0 such that

E
[‖h‖k

C4−ε(�1)

]≤ c
(

sup
|α|≤4

sup
z∈�1

∣∣E[∂αh(z)
]∣∣k + sup

|α|≤4
sup
z∈�2

Var
[
∂αh(z)

]k/2
)
.

Denote the conditioning event Ax,y = {∇F(w) = 0 for all w = 0, x, y}. By the above in-
equality, the lemma is proved if we verify the following: there exists a c > 0, depending only
on the distribution of f , such that

(4.16)

sup
z∈�2

sup
(x,y)∈D

sup
|α|≤4

Var
[
∂αF (z)|Ax,y

]
< c and

sup
z∈�1

sup
(x,y)∈D

sup
|α|≤4

∣∣E[∂αF (z)|Ax,y

]∣∣< c‖p‖C4(�1)
.

Since conditioning can only reduce the variance of a Gaussian variable,

Var
[
∂αF (z)|Ax,y

]≤ Var
[
∂αF (z)

]= Var
[
∂αf (z)

]
,

and the latter is bounded uniformly over z and α. This verifies the first part of (4.16).
Turning to the second part of (4.16), for g ∈ C2(�1), we define

Gx,y(g) = (∇g(0),∇g(x),∇g(y)
)t

.

By Gaussian regression,

(4.17)

E
[
∂αF (z)|Ax,y

]
= E

[
∂αF (z)

]− Cov
[
∂αF (z),Gx,y(F )

]
Cov

[
Gx,y(F )

]−1
E
[
Gx,y(F )

]
= ∂αp(z) − Cov

[
∂αf (z),Gx,y(f )

]
Cov

[
Gx,y(f )

]−1
Gx,y(p).

Note that this verifies the second part of (4.16) when p ≡ 0.
Suppose that the second part of (4.16) fails, so there exists a sequence pn ∈ C4(�1) and

(xn, yn, zn) ∈D × �1 such that∣∣E[∂αF (zn)|Axn,yn

]∣∣‖pn‖−1
C4(�1)

→ ∞.

By compactness, we may pass to a subsequence for which znk
→ z ∈ �1 and (xnk

, ynk
) →

(x, y) ∈ D. Note that if (x, y) ∈ D then the second line of (4.17) is finite by the first point
of Remark 1.8, so evidently (x, y) ∈ ∂D. Hence, we may find matrices M , Mk satisfying the
conclusions of Lemma 4.8. Then by Lemma 4.7 and Gaussian regression

E
[
∂αF (znk

)|Axnk
,ynk

]= ∂αpnk
(znk

) − Cov
[
∂αf (znk

),MkGxnk
,ynk

(f )
]

× Cov
[
MkGxnk

,ynk
(f )

]−1
MkGxnk

,ynk
(pnk

).
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By the second and third parts of Lemma 4.8, we have

Cov
[
∂αf (znk

),MkGxnk
,ynk

(f )
]→ Cov

[
∂αf (z),MG3

0,y(f )
]

Cov
[
MkGxnk

,ynk
(f )

]−1 → Cov
[
MG3

0,y(f )
]−1∣∣MkGxnk

,ynk
(pnk

) − MGx,y(pnk
)
∣∣= o

(‖pnk
‖C4(�1)

)
.

Since the first two matrices on the right-hand side have bounded elements and

max
{∣∣∂αpnk

(znk
)
∣∣,∥∥Gx,y(pnk

)
∥∥∞}≤ ‖p‖C4(�1)

,

we see that |E[∂αF (znk
)|Axnk

,ynk
]|‖pnk

‖−1
C4(�1)

is uniformly bounded, yielding the desired
contradiction. This completes the proof of (4.16), and hence of the lemma. �

PROOF OF LEMMA 4.5. In the proof, c′ > 0 are constants that depend only on the field
and may change from line to line. Recall the event Ax,y = {∇F(w) = 0 for all w = 0, x, y}.
By Hölder’s inequality, we have

E
[∣∣det

(∇2F(0)∇2F(x)∇2F(y)
)∣∣|Ax,y

]≤ ∏
z∈{0,x,y}

E
[∣∣det

(∇2F(z)
)∣∣3|Ax,y

]1/3
.

Consider z ∈ {0, x, y}. For any orthonormal basis u1, . . . , ud , expanding the determinant, we
have

(4.18)

E
[∣∣det

(∇2F(z)
)∣∣3|Ax,y

]1/3 = E

[∣∣∣∣∣ ∑
σ∈Sd

d∏
i=1

∂ui
∂uσ(i)

F (z)

∣∣∣∣∣
3∣∣∣Ax,y

]1/3

≤ c′ ∑
σ∈Sd

d∏
i=1

E
[∣∣∂ui

∂uσ(i)
F (z)

∣∣3d |Ax,y

] 1
3d ,

where Sd is the group of permutations of {1, . . . , d} and for the second line we have used
Hölder’s inequality.

Our aim is to bound the right-hand side of (4.18). Let us consider the case z = 0, in which
we claim it is bounded by c′(1 + ‖p‖C4(�1)

)|y|(√|y| + sin(θ)). We consider an orthonor-
mal basis of R

d , ŷ, u2, . . . , ud , where ŷ = y/|y|. Each product on the right-hand side of
(4.18) contains either the term corresponding to ∂2

ŷ
F (0) or two terms of the form ∂ui

∂ŷF (0),
∂uj

∂ŷF (0). We will prove the following bounds for these terms:

(4.19)
E
[∣∣∂ŷ∂ui

F (0)
∣∣3d |Ax,y

]≤ c′(1 + ‖p‖C4(�1)

)3d |y|3d and

E
[∣∣∂2

ŷ F (0)
∣∣3d |Ax,y

]≤ c′(1 + ‖p‖C4(�1)

)3d |y|3d(√|y| + sin θ
)3d

.

This will be sufficient for the desired bound on (4.18) since for any i and σ , the remaining
terms satisfy

E
[∣∣∂ui

∂uσ(i)
F (0)

∣∣3d |Ax,y

]≤ E
[‖F‖3d

C2(�1)
|Ax,y

]≤ c′(1 + ‖p‖C4(�1)

)3d

by (4.15).
For z ∈ {x, y}, let D(z) = ∇F(z)−∇F(0)

|z| . Turning to (4.19), by a Taylor expansion we have
for any unit vector v, ∣∣v · D(z) − ∂ẑ∂vF (0)

∣∣≤ c′|z|‖F‖C3(�1)
.



A CLT FOR THE NUMBER OF EXCURSION SET COMPONENTS OF GAUSSIAN FIELDS 917

Then by Lemmas 4.7 and 4.10, we have

(4.20)
E
[∣∣∂ŷ∂vF (0)

∣∣3d |Ax,y

]≤ E
[∣∣∂ŷ∂vF (0) − v · D(y)

∣∣3d |Ax,y

]
≤ c′|y|3d

E
[‖F‖3d

C3(�1)
|Ax,y

]≤ c′(1 + ‖p‖C4(�1)

)3d |y|3d .

Taking v = ui establishes the first bound in (4.19) while taking v = ŷ establishes the second
bound in (4.19) for θ ∈ [π/3,2π/3].

To prove the second bound for θ ∈ [2π/3, π], we require a higher order Taylor expansion.
Specifically, by combining the elementary estimates∣∣∣∣ŷ · D(y) − ∂2

ŷ F (0) − |y|
2

∂3
ŷ F (0)

∣∣∣∣≤ c′|y|3/2‖F‖C7/2(�1)

and∣∣∣∣x̂ · D(y) − ŷ · D(x) − cos θ

2

(|y| − |x| cos θ
)
∂3
ŷ F (0)

∣∣∣∣≤ c′|y|(√|y| + sin θ
)‖F‖C7/2(�1)

with Lemma 4.7 we have

E
[∣∣∂2

ŷ F (0)
∣∣3d |Ax,y

]
= E

[∣∣∣∣∂2
ŷ F (0) − ŷ · D(y) + |y|

cos θ(|y| − |x| cos θ)

(
x̂ · D(y) − ŷ · D(x)

)∣∣∣∣3d ∣∣∣Ax,y

]
≤ c′|y|3d(√|y| + sin θ

)3d
E
[‖F‖3d

C7/2(�1)
|Ax,y

]
≤ c′(1 + ‖p‖C4(�1)

)3d |y|3d(√|y| + sin θ
)3d

completing the proof of (4.19).
To complete the proof of the lemma, we require the bounds

E
[∣∣det

(∇2F(x)
)∣∣3d |Ax,y

]1/3d ≤ c′(1 + ‖p‖C4(�1)

)3d |x|, and

E
[∣∣det

(∇2F(y)
)∣∣3d |Ax,y

]1/3d ≤ c′(1 + ‖p‖C4(�1)

)3d |y|.
These both follow from the arguments given above on swapping the roles of 0, x and y.
Specifically, the analogue of (4.18) also holds for both x and y and the analogue of the first
part of (4.19) is enough to conclude. �

APPENDIX A: BASIC PROPERTIES OF SMOOTH GAUSSIAN FIELDS

We collect some basic properties of smooth Gaussian fields. First, we consider Gaussian
fields defined by a stationary moving average representation f = q ∗ W .

LEMMA A.1. Let q ∈ Ck(Rd), and suppose there exist c > 0 and β > d such that, for
|x| ≥ 1,

sup
|α|≤k

∣∣∂αq(x)
∣∣≤ c|x|−β.

Define f = q ∗ W . Then f is a.s. Ck−1-smooth, and for every |α| ≤ k − 1,

∂αf = (
∂αq

)
� W.

Moreover, the spectral measure of f has a continuous density, and in particular its support
contains an open set.
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PROOF. See [35], Proposition 3.3, for a proof of the first statement in the case d = 2,
with the general case identical. The second statement follows from dominated convergence,
whilst the last is a consequence of the Riemann–Lebesgue lemma. �

We next state a standard nondegeneracy property of stationary Gaussian fields.

LEMMA A.2. Let f be a Ck-smooth stationary Gaussian field on R
d , and suppose

that the support of it spectral measure μ contains an open set. Consider a finite collec-
tion (xi, αi)1≤i≤n, where xi ∈ R

d , αi is a multi-index such that |αi | ≤ k, and each (xi, αi) is
distinct. Then the Gaussian vector (

∂αif (xi)
)
1≤i≤n

is nondegenerate.

PROOF. See [47], Theorem 6.8, for the case k = 0, and [8], Lemma A.2, for the case
k ≤ 2; the general case can be proven identically. �

APPENDIX B: A TOPOLOGICAL LEMMA

In this section, we deduce Lemma 2.1 from a fundamental lemma of stratified Morse
theory, which states roughly that the topology of the level set {g + tp = 0} does not change
as t varies over [t1, t2] unless, for some t ∈ [t1, t2], g + tp has a (stratified) critical point at
level 0.

Although this lemma is classical, there are complicating factors in our setting: most of
the literature treats either constant perturbations or compact manifolds without boundary,
whereas we consider general perturbations on domains with corners. However, our setting is
simpler in one respect: the functions g and p are defined in a neighbourhood of the domains.

Let D be a stratified domain as defined in Section 2 and let U be a compact domain that
contains a neighbourhood of D. For two subsets A,B ⊂ IntD, an isotopy between A and
B is a continuous map H : A × [t1, t2] → IntD such that, for each t ∈ [t1, t2], H(·, t) is a
homeomorphism, H(·, t1) = id, and H(A, t2) = B .

Fix a pair of functions (g,p) ∈ C2(U) × C2(U), and for t ∈ [t1, t2] define gt = g + tp. A
quasi-critical point is a pair (x, t) ∈ D × [t1, t2] such that gt has a (stratified) critical point at
x at level 0. The number of such quasi-critical points is denoted by Nq.c.(D,g,p).

Lemma 2.1 is an immediate corollary of the following rather standard lemma.

LEMMA B.1 (Fundamental lemma of stratified Morse theory). If Nq.c.(D,g,p) = 0,
then there is an isotopy between the union of all interior components (i.e., components that
do not intersect ∂D) of the level sets {gt1 = 0} ∩D and {gt2 = 0} ∩D. In particular, the num-
ber of interior components of the sets {gt1 = 0} and {gt2 = 0} are the same. The conclusion is
also true for the interior components of the excursion sets {gti ≥ 0} ∩ D, i = 1,2.

Before proving Lemma B.1, let us deduce Lemma 2.1.

PROOF OF LEMMA 2.1. Consider the interpolation gt = g − � + tp for t ∈ [0,1]. Since
(g,p) is stable (on D at level �), for any (x, t) ∈ D × [0,1] we have

max
{∣∣gt (x)

∣∣, ∣∣∇F gt (x)
∣∣}> 0.

Hence, Nq.c.(D,g − �,p) = 0, and the result follows by an application of Lemma B.1. �
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PROOF OF LEMMA B.1. First, we prove a local version of the result: we fix t ′ ∈ [t1, t2]
and prove that the conclusion holds for t ∈ [t ′, t ′ + δ] and some δ > 0. Without loss of gener-
ality, we may assume that t ′ = 0.

Let Lt be the union of all interior connected components of {gt = 0} ∩ D, and let Lt,ε be
the ε-neighbourhood of Lt . If we consider gt as a function D × [t1, t2] → R, then its zero
locus Z is a manifold. This follows from the implicit function theorem since the derivative
is nonvanishing on the locus. Indeed, let us assume that it contains a critical point, then at
this point (x, t) we have ∂tgt (x) = 0 and ∇xgt (x) = 0, hence there is a quasi-critical point.
This proves that Z is a differentiable manifold of co-dimension 1 and its boundary lies on
the boundary of D × [t1, t2]. Let us consider an interior component of L0. This component
is on the boundary of a certain component of Z. We claim that this component does not
intersect (∂D) × [t1, t2]. If it does, then we can consider the first time τ when it happens,
and then the intersection of the component by D × {τ } contains a level surface of gτ tangent
to the boundary. This means that gτ has a stratified critical point, which is impossible by
our assumptions. So, each component of Z either lies in IntD × [t1, t2] or its every section
intersects ∂D.

Since this compact surface does not intersect (∂D) × [t1, t2], the distance between
them is strictly positive. In other words, there is ε > 0 such that Lt,ε ⊂ IntD for all
t ∈ [t1, t2]. Similarly, by reducing ε if necessary, there is c > 0 such that |∇gt (x)| > c for
all x ∈ L0,ε and all t ∈ [t1, t2]. Hence, by choosing δ > 0 sufficiently small, we can ensure
that |∇gt (x)| > (4δ/ε) · supD|p| for all t ∈ [0, δ] and all x ∈ L0,ε .

For x0 ∈ D, define the flow
dxt

dt
= −∂tgt (xt )

∇gt (xt )

|∇gt (xt )|2 , t ∈ [0, δ],
which is well-defined outside critical points of gt . The key property of this flow is that, by
the chain rule, gt (xt ) is constant in t . Note also that∣∣∣∣dxt

dt

∣∣∣∣= ∣∣p(xt )
∣∣∣∣∇gt (xt )

∣∣−1
.

Let us consider x0 ∈ L0. By the assumption that |∇gt (x)| > (4δ/ε) · supD|p| for all
x ∈ L0,ε , we deduce that |xt − x0| ≤ ε/4. Hence, H(x, t) = xt is an isotopy such that
H(L0, t) ⊂ Lt ∩ L0,ε . Note that in terms of the set Z described above, for each component of
L0 its images under the flow are the sections of the corresponding component of Z. Our flow
argument defines an isotopy between sections of all ‘interior’ components of Z. In particu-
lar, this means that the union of all ‘interior’ components of Z is topologically L0 × [t1, tt ].
Hence, H(L0, t) = Lt for all t ∈ [0, δ].

This argument shows that local isotopies exist: for each t there is δ = δ(t) such that Lt is
isotopic to Lt+δ(t). By compactness, we can choose a finite number of times sk such that

s1 = t1 < s2 < s1 + δ(s1) < s3 < s2 + δ(s2) < · · · < t2 < sn + δ(sn).

By concatenating isotopies on overlapping time intervals, we obtain a global isotopy, that is,
an isotopy between Lt1 and Lt2 . This completes the proof of the lemma for level sets.

Since the interior level sets form the boundary of all interior excursion sets, by the isotopy
extension lemma [25], Theorem 8.1.3, we can extend the isotopy of Lt to an isotopy of
IntD, which agrees with the isotopy of Lt and is the identity in a neighbourhood of ∂D. In
particular, this gives an isotopy of the union of all interior components of the corresponding
excursion sets. �

REMARK B.2. With more work a similar flow could also be defined for components that
intersect the boundary, which would define a stratified isotopy of {gt = 0}∩D for all t . Since
we only apply Lemma B.1 to deduce the equality of the number of interior components, we
do not need this.
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