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1. Introduction
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Smooth Gaussian fields

Basic setting

Definition
Let f : R? — R be a random function. We say that f is a Gaussian field if for
any n€ Nand xi,...,xa € RY, (f(x1),...,f(xa)) is a normal random vector.

The field is smooth if, with probability one f € C2.
The field is stationary if its distribution is invariant under translations.

> Given a stationary Gaussian field, we may normalise so that for all x € R?,
f(x) ~N(0,1).

» We can construct such a field as
oo
f=>Zf
n=1

where Z, "% N(0,1) and the f, are deterministic C? functions (satisfying
appropriate conditions).

» Analogously with Gaussian vectors, the distribution of f is specified by its
covariance function K : RY — R defined as

K(x —y) = Cov[f(x), f(y)] Vx,y € R%.
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Smooth Gaussian fields

Excursion sets

We will consider the geometry/topology of the excursion sets

{fzé}::{xeRd(f(x)ze} for £ € R.

Figure: Excursion sets {f > 0} in white for the fields on R? with covariance functions
K(x) = Jo(|x]), the 0-th Bessel function, (left) and K(x) = exp(—|x|?/2) (right).
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Motivation

1) Studying classes of functions

A Gaussian field can be viewed as a measure on a particular class of functions.
Statements about the field can be interpreted as statements about ‘typical’
functions in the class.

1. Berry’s conjecture: on chaotic 2-dimensional manifolds, high-frequency
eigenfunctions of the Laplacian can be approximated by the Gaussian field
with K(x) = Jo(|x]) [6].

2. Hilbert’s 16th problem concerns the zero set of homogeneous
polynomials. There is a canonical Gaussian measure on such polynomials
which behaves locally like the stationary field with K(x) = exp(—|x|*/2)
[10].
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Motivation
2) Percolation theory

» Percolation theory studies the long-range connectivity properties of
random models.

» Bernoulli percolation on the square lattice: adjacent points of Z2 are
joined by an edge independently with probability p.

oIi
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L

Figure: A section of the square lattice Z? (left) and a realisation of the Bernoulli
percolation model with p = 0.4 on this section (right).




Motivation
2) Percolation theory

» Progress has been made recently in studying percolation of Gaussian
excursion sets [2].

» Phase transition: for a given field, there is a critical level ¢, such that

® for ¢ > {c, {f > £} contains only bounded components,
® for ¢ < {c, {f > £} contains a unique unbounded component.

Figure: The excursion sets {f > ¢} for £ = 0.05 (left), £ = 0 (middle) and ¢ = —0.05
(right). Largest component highlighted in green.
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Motivation
3) Statistical applications

» Gaussian fields arise in many areas of science:
® Medical imaging [18],
® Cosmology [16],
® Topological data analysis [1].

> Geometric/topological properties of excursion sets can be used as test
statistics. (See [17] for an overview.)

Figure: Measurements
from a PET study of
brain activity during a
reading task. (Source:

[17]).
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Smooth Gaussian fields

Questions of interest

» What are the geometric and topological properties of smooth Gaussian
excursion sets?

» We would like to analyse:

Geometric functionals Topological functionals
® volume ® number of connected
® boundary volume components
® Euler characteristic ® Betti numbers

» What is the expectation, variance and distribution of such functionals on a
bounded domain?

» How does this depend on the size of the domain? the level of the
excursion set? the covariance of the field?

DE%LM}]
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2. Geometric functionals




Geometric functionals
A rough definition

> A functional of a random field is described as local (or geometric) if it is
an integral of a pointwise function of the field and its derivatives:

[ 00, 910, T )....) ()
D
» We will consider functionals of the form
FR:/ p(f(x) —£) dx
[—-R,R]

for some p : R — R (e.g. ¢(y) = 1,>0).
» How does this behave as R — oo?

» First order behaviour is trivial: by Fubini’s theorem,
E[F&] = (2R)u(¢)
where p(¢) := E[p(f(0) — £)].




Second order properties

Hermite polynomials

The variance and limiting distribution of local functionals can be studied using
Hermite polynomials.

» The Hermite polynomials (H,)»>0 are defined inductively by setting
Ho(x) =1 and Hpi1(x) = xHn(x) — H,(x)
which yields
Hi(x) =x, Ha(x)=x>—1, Hs(x)=x>—3x.
> If X, Y are jointly normal with mean zero and variance one then

nlCov[X,Y]" ifn=m

E[Hn(X)Hm(Y)] = {0 if n£ m.

> If E[*(Z)] < oo for Z ~ N(0,1) then

where 3" a2n! < oco.



Second order properties

Orthogonal decomposition

» Considering the expansion ¢(- — £) = > an(¢)H, yields

Fr = i an(ﬂ)/[

—R,R]d

Ha(f(x)) dx = Qn.
n=0
» The variance of Fr can be computed by considering

Cov [Qn, Qm] = an(£)am(€) / Cov[Ha(f(x)), Hn(f(y))] dxdy

[—R,R)?

I ENGR JJ i rps K(x = y)" dxdy if n=m#0,
o otherwise.

» Hence Var[Fr] = ), Var[Qx,] which depends on the integrability of K.




Second order properties

Covariance function examples

Three general classes of covariance function are considered in the literature:
1. K is integrable
® Example: the Bargmann-Fock field has covariance

|2
K(x) = exp (f%) .
2. K is regularly varying at infinity with index o € (0, d)
® Example: The Cauchy field has covariance
K(x) = (1+ [x?)7/2.
3. K is oscillating and slowly decaying

® Example: The Random Plane Wave is the two-dimensional field with
covariance

K(x) = Jo(|x]) ~ \/gcos(|x| - 7r/4)|x\71/2 as |x| — oo.




Second order properties

Case 1: Integrable covariance

Recall:

Fr = Z Qn, Var[Qn] = an(ﬂ)zn!/ K(x — y)" dxdy
n=0

[=R,RJ2

» If K is integrable then for n # 0
Var[Qn] ~ (an(£)2n!/ K(x)" dx) (2R)?
Rd

so each chaos has variance of order R (or 0).
> Since 3°, an(£)’n! < oo, for each ¢

Var[Fg] ~ ¢.R? as R — oo

where ¢, > 0 assuming ¢ is not too degenerate.




Second order properties

Case 1: Integrable covariance

Using similar, but more involved, computations one can compute the higher
order moments of Fg to prove:

Theorem (Breuer-Major theorem)

If f has rotation invariant distribution, then as R — oo

Fr — p1(£)

N < N(0,1)

Remark
More modern proofs of this result use the Malliavin-Stein method (in particular
the fourth-moment theorem) which also yields a rate of convergence.




Second order properties

Case 2: Regularly varying covariance

> If K(x) ~ c|x|™® then for n # 0
Var[Q»] = an(£)2n!/ K(x —y)" dxdy
[~R.RI
R¥*="  if pa < d,
~ an(£)’ck,n X { R7log R if nav = d,
R? if na > d.

» Hence a finite number of the Q, terms have higher orders of variance.
> Since 3°, an(£)’n! < oo

Z Var[Q,] ~ c:R?

n>d/a

and so Fr =), Q, will be asymptotically dominated by a single term if
an(€) # 0 for some n < d/a.
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Second order properties

Case 2: Regularly varying covariance

Theorem (Dobrushin-Major theorem)
Let n*(£) = inf{n: a,(€) # O}. If f satisfies some technical conditions, then

R=m" if p*a < d,
Var[Fr] ~ ck,pe X X R%log R if n*a =d, as R — oo.
R if n"*a > d,
Moreover if n* =1 or n*a > d then
Fr— () 4

\/\W—M\/(O,l).

For other values of n*, the limiting distribution is a Hermite distribution.

Remark

» Typically n*(£) = 1 for all but finitely many values of £, which are
described as anomalous levels.

> If @ is regular then a,(¢) = (—1)"u™(¢)/n! so that anomalous levels
correspond to critical points of . DuBL
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Local functionals

Limit theorem references

» The classical Breuer-Major theorem [7]. A modern proof using the
Malliavin-Stein method [15].

» The Dobrushin-Major theorem [8] was first proven using multiple
Wiener-Itd integrals.

» More recently, a general CLT has been proven for some fields with slowly
decaying oscillating correlations [11].
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3. Topological functionals




Topological functionals
What is known?

» Much less is known about non-local/topological functionals of Gaussian
fields.

» The previous approach fails due to the lack of an integral representation.

» There is no unifying theory, but many partial results using a variety of

methods:
® Law of large numbers [13] (ergodic argument)
® Variance bounds [14, 5, 4] (coupling and interpolation methods)
® Central limit theorem [3] (martingale limit theorem)

DEBLIN
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Topological functionals

A new approach

» In joint work with Stephen Muirhead [12], we adapt the Hermite expansion
approach to non-local functionals.

> Let f:Z9 — R be the Gaussian free field (in d > 3), so that

K(x —y) ~ calx — y| 772,

» The cluster count Ng(f) is the number of clusters (i.e. connected
components) of the graph {f > ¢} N[-R, R]“.
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Wiener chaos expansion

Abstract statement

Let H be a set of centred jointly Gaussian variables. Let P, be the space of all
polynomials of degree nin H.

The n-th Wiener chaos of H is H™ := P, N 7’n71L.
Theorem (Wiener, 1td)
Let the random variable X be square integrable and o(H)-measurable, then

x £ i QulX]

n=0

where Q, denotes projection onto H™.

Remark

» While the result is very general, in practice the chaos projections can be
difficult to characterise (especially if H is large).

» When H has a single element, this is just the Hermite expansion. Local
functionals can be reduced to this case.




Wiener chaos expansion

Smooth functionals

Proposition
Let D C Z9 be finite and ® : R® — R be smooth and bounded. Then

Q,,[cb(f)]:% S E .. 0 O(OIQuF(x) - F(x0)]-

» The proof uses Gaussian integration by parts and is quite elementary.

» The term Qu[f(x1)...f(xn)] is called a Wick polynomial and can be
evaluated explicitly.




Wiener chaos expansion

Cluster count

Proposition
For the cluster count, the expected derivative at x = (x1,...,Xn) can be

replaced by
Pr(x) := E[dy ... d, Nr(f)|f(x) = L (£),

where d,; denotes the discrete derivative
di Nr(f) = Nr({f > £} U {xi}) — Nr({f > £} \ {xi}).
and gy is the density of f(x).

Remark
For a local functional, Oy, . ..0x,®(f) = 0 unless x; = -+- = x, and
Qn[f(x)"] = Ha(f(x)) so we reduce to the previous analysis.




Wiener chaos expansion

‘Semi-locality’ via percolation results

» If Pr decays rapidly away from the diagonal, then we can analyse the
variance and limiting distribution on each chaos as in the local case. We
can view this as ‘semi-locality’ of the cluster count.

|

l ™1 A

L t

3 I_I X :\ Ar Figure: For this configuration
| | dy dy, Nr(f) = 1.

! T {f>0

|

l

» In general, if dy, ...dx, Nr(f) # 0 then xq,..., x, must be joined by
bounded clusters of {f > ¢}.




Wiener chaos expansion

‘Semi-locality’ via percolation results

Theorem (Truncated arm decay [9])

Let f : Z9 — R be the Gaussian free field for d > 3. There exists {. € R such
that for every £ # L., the probability that 0 is contained in a bounded cluster of
{f > £} of diameter at least n is at most e~"" for some ¢, p > 0.

Corollary
For £ # £, there exists c, C, p > 0 such that

Pr(x) < Ce™ctiam®”

where diam(x) denotes the diameter of x.




Wiener chaos expansion

Limit theorems for the cluster count

Let u(f) = limg_ 0o E[N&()]/(2R)? be the mean clusters-per-vertex.

Theorem
Let f : Z® — R be the Gaussian free field and £ # (..

RS if i’ (€) #0

R* if 1/ (€) = 0, " (£) # 0
Va‘r[NR(f)] ~C X 3 I M/( ) //N‘ ( )?é "

Rilog R if p/'(€) = p"(£) = 0, " (€) # 0

R3 otherwise.

In case 2, the (normalised) limiting distribution is a Hermite distribution, in all
other cases it is Gaussian.

» Analogous results hold for d > 4 and other fields but are omitted here for
brevity.
» Similar to results in local case, but the requirement that £ # 4. is new.
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Summary

Open questions:
» Can this approach be extended to smooth fields?

» Does this approach enable the Malliavin-Stein method for non-local
functionals?

» What happens at the critical level?

Thank you for listening!
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