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Smooth Gaussian fields
Basic setting

▶ Let f : Rd → R be a stationary C 2 Gaussian field with mean zero.
▶ The distribution of f is specified by its covariance function K : Rd → R

defined as
K(x − y) = Cov[f (x), f (y)] ∀x , y ∈ Rd .

▶ We will consider the geometry/topology of the excursion sets

{f ≥ ℓ} :=
{
x ∈ Rd

∣∣∣ f (x) ≥ ℓ
}

for ℓ ∈ R.

Figure: Excursion sets {f ≥ 0} in white for the fields on R2 with K(x) = J0(|x |),
the 0-th Bessel function, (left) and K(x) = exp(−|x |2/2) (right).
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Motivation
1) Studying classes of functions

A Gaussian field can be viewed as a measure on a particular class of functions.
Statements about the field can be interpreted as statements about ‘typical’
functions in the class.

1. Berry’s conjecture: on generic 2-dimensional manifolds, high-frequency
eigenfunctions of the Laplacian can be approximated by the Gaussian field
with K(x) = J0(|x |) [6].

2. Hilbert’s 16th problem concerns the zero set of homogeneous
polynomials. There is a canonical Gaussian measure on such polynomials
which behaves locally like the stationary field with K(x) = exp(−|x |2/2)
[11].
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Motivation
2) Percolation theory

▶ Percolation theory studies the large scale topological properties of spatial
random models.

▶ Phase transition: for a given field, there is a critical level ℓc such that,
with probability one

• for ℓ > ℓc , {f ≥ ℓ} contains only bounded components,
• for ℓ < ℓc , {f ≥ ℓ} contains a unique unbounded component.

See [2] for a survey.

Figure: The excursion sets {f ≥ ℓ} for ℓ = 0.05 (left), ℓ = 0 (middle) and ℓ = −0.05
(right). Largest component highlighted in green.
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Motivation
3) Statistical applications

▶ Gaussian fields arise in many areas of science:
• Medical imaging [20],
• Cosmology [18],
• Topological data analysis [1].

▶ Geometric/topological properties of excursion sets can be used as test
statistics. (See [19] for an overview.)

Figure: Measurements
from a PET study of
brain activity during a
reading task. (Source:
[19]).
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Smooth Gaussian fields
Questions of interest

▶ What are the geometric and topological properties of smooth Gaussian
excursion sets?

▶ We would like to analyse:

Geometric functionals
• volume

• boundary volume

• Euler characteristic

Topological functionals

• number of connected
components

• Betti numbers

▶ What is the expectation, variance and distribution of such functionals on a
bounded domain?

▶ How does this depend on the size of the domain? the level of the
excursion set? the covariance of the field?
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Geometric/local functionals
A rough definition

▶ A functional of a random field is described as local (or geometric) if it is
an integral of a pointwise function of the field and its derivatives:∫

D

φ(f (x),∇f (x),∇2f (x)) µ(dx)

▶ We will consider functionals of the form

FR =

∫
[−R,R]d

φ(f (x)− ℓ) dx

for some φ : R → R (e.g. φ(y) = 1y≥0).

▶ How does this behave as R → ∞?

▶ First order behaviour is trivial: by Fubini’s theorem,

E[FR ] = (2R)dµ(ℓ)

where µ(ℓ) := E[φ(f (0)− ℓ)].
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Second order properties
Hermite polynomials

The variance and limiting distribution of local functionals can be studied using
Hermite polynomials.

▶ The Hermite polynomials (Hn)n≥0 can be defined inductively by setting

H0(x) = 1 and Hn+1(x) = xHn(x)− H ′
n(x)

which yields

H1(x) = x , H2(x) = x2 − 1, H3(x) = x3 − 3x .

▶ Hermite polynomials are orthogonal with respect to the Gaussian measure:
if X ,Y are jointly normal with mean zero and variance one then

E[Hn(X )Hm(Y )] =

{
n!Cov[X ,Y ]n if n = m

0 if n ̸= m.

▶ If E[φ2(Z)] < ∞ for Z ∼ N (0, 1) then

φ =
∞∑
n=0

anHn

where
∑

n a
2
nn! < ∞.
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Second order properties
Orthogonal decomposition

▶ Considering the expansion φ(· − ℓ) =
∑

n an(ℓ)Hn yields

FR =
∞∑
n=0

an(ℓ)

∫
[−R,R]d

Hn(f (x)) dx =:
∞∑
n=0

Qn.

▶ The variance of FR can be computed by considering

Cov [Qn,Qm] = an(ℓ)am(ℓ)

∫∫
[−R,R]2d

Cov[Hn(f (x)),Hm(f (y))] dxdy

=

{
an(ℓ)

2n!
∫∫

[−R,R]2d
K(x − y)n dxdy if n = m ̸= 0,

0 otherwise.

▶ Hence Var[FR ] =
∑

n Var[Qn] which depends on the integrability of K .
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Second order properties
Covariance function examples

Three general classes of covariance function are considered in the literature:

1. K is integrable
• Example: the Bargmann-Fock field has covariance

K(x) = exp

(
−
|x |2

2

)
.

2. K is regularly varying at infinity with index α ∈ (0, d)
• Example: The Cauchy field has covariance

K(x) = (1 + |x |2)−α/2.

3. K is oscillating and slowly decaying
• Example: The Random Plane Wave is the two-dimensional field with

covariance

K(x) = J0(|x |) ∼
√

2

π
cos(|x | − π/4)|x |−1/2 as |x | → ∞.
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Second order properties
Case 1: Integrable covariance

Recall:

FR =
∞∑
n=0

Qn, Var[Qn] = an(ℓ)
2n!

∫
[−R,R]2d

K(x − y)n dxdy

▶ If K is integrable then for n ̸= 0

Var[Qn] ∼
(
an(ℓ)

2n!

∫
Rd

K(x)n dx

)
(2R)d

so each chaos has variance of order Rd (or 0).

▶ Since
∑

n an(ℓ)
2n! < ∞, for each ℓ

Var[FR ] ∼ cℓR
d as R → ∞

where cℓ > 0 assuming φ is not too degenerate.
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Second order properties
Case 1: Integrable covariance

Using similar, but more involved, computations one can compute the higher
order moments of FR to prove:

Theorem (Breuer-Major theorem)

If f has rotation invariant distribution, then as R → ∞

FR − µ(ℓ)√
Var[FR ]

d→ N (0, 1)

Remark
More modern proofs of this result use the Malliavin-Stein method (in particular
the fourth-moment theorem) which also yields a rate of convergence.
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Second order properties
Case 2: Regularly varying covariance

▶ If K(x) ∼ c|x |−α then for n ̸= 0

Var[Qn] = an(ℓ)
2n!

∫
[−R,R]d

K(x − y)n dxdy

∼ an(ℓ)
2cK ,n ×


R2d−nα if nα < d ,

Rd logR if nα = d ,

Rd if nα > d .

▶ Hence a finite number of the Qn terms have higher orders of variance.

▶ Since
∑

n an(ℓ)
2n! < ∞ ∑

n>d/α

Var[Qn] ∼ cℓR
d

and so FR =
∑

n Qn will be asymptotically dominated by a single term if
an(ℓ) ̸= 0 for some n ≤ d/α.
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Second order properties
Case 2: Regularly varying covariance

Theorem (Dobrushin-Major theorem)

Let n∗(ℓ) = inf{n : an(ℓ) ̸= 0}. If f satisfies some technical conditions, then

Var[FR ] ∼ cK ,φ,ℓ ×


R2d−n∗α if n∗α < d ,

Rd logR if n∗α = d ,

Rd if n∗α > d ,

as R → ∞.

Moreover if n∗ = 1 or n∗α > d then

FR − µ(ℓ)√
Var[FR ]

d→ N (0, 1).

For other values of n∗, the limiting distribution is a Hermite distribution.

Remark

▶ Typically n∗(ℓ) = 1 for all but finitely many values of ℓ, which are
described as anomalous levels.

▶ If φ is regular then an(ℓ) = (−1)nµ(n)(ℓ)/n! so that anomalous levels
correspond to critical points of µ.
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Local functionals
Limit theorem references

▶ The classical Breuer-Major theorem [7]. A modern proof using the
Malliavin-Stein method [17].

▶ The Dobrushin-Major theorem [8] was proven using multiple Wiener-Itô
integrals.

▶ More recently, a general CLT has been proven for some fields with slowly
decaying oscillating correlations [12].
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Topological functionals
What is known?

▶ Much less is known about non-local/topological functionals of Gaussian
fields.

▶ The previous approach fails due to the lack of an integral representation.

▶ There is no unifying theory, but many partial results using a variety of
methods:

Type of result Methods
Law of large numbers [15] Ergodic argument
Variance bounds[16, 5, 4] Coupling, interpolation formulae

Central limit theorem [3, 13, 10] Martingale techniques
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Topological functionals
A new approach

▶ In joint work with Stephen Muirhead [14], we adapt the Hermite expansion
approach to non-local functionals.

▶ Let f : Zd → R be the Gaussian free field (in d ≥ 3), so that

K(x − y) ∼ cd |x − y |−(d−2).

▶ The cluster count NR(f ) is the number of clusters (i.e. connected
components) of the graph {f ≥ ℓ} ∩ [−R,R]d .
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Wiener chaos expansion

Let H be a set of centred jointly Gaussian variables. Let Pn be the space of all
polynomials of degree n in H.

The n-th Wiener chaos of H is H :n: := Pn ∩ Pn−1
⊥
.

Theorem
Let the random variable X be square integrable and σ(H)-measurable, then

X
L2

=
∞∑
n=0

Qn[X ]

where Qn denotes projection onto H :n:.

Remark

▶ While the result is very general, in practice the chaos projections can be
difficult to characterise (especially if H is large).

▶ When H has a single element, this is just the Hermite expansion.
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Wiener chaos expansion
Smooth functionals

Proposition

Let D ⊂ Zd be finite and Φ : RD → R be smooth and bounded. Then

Qn[Φ(f )] =
1

n!

∑
x1,...,xn∈D

E[∂x1 . . . ∂xnΦ(f )] :f (x1) . . . f (xn):

where :f (x1) . . . f (xn): = Qn[f (x1) . . . f (xn)].

▶ The proof uses Gaussian integration by parts and is quite elementary.

▶ The term :f (x1) . . . f (xn): is called a Wick polynomial and can be
evaluated using a diagram formula.
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Wiener chaos expansion
Cluster count

The discrete derivative dx is defined as

dxNR(f ) = NR({f ≥ ℓ} ∪ {x}})− NR({f ≥ ℓ} \ {x})

Proposition

For R ≥ 1

Qn[NR(f )] =
1

n!

∑
x1,...,xn∈[−R,R]d∩Zd

PR(x1, . . . , xn) :f (x1) . . . f (xn):

where the pivotal intensity PR is defined for distinct points x = (x1, . . . , xn) as

PR(x) = E[dx1 . . . dxnNR(f )|f (x) = ℓ]φf (x)(ℓ),

and φf (x) is the density of f (x).
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Wiener chaos expansion
‘Semi-locality’ via percolation results

▶ For a local functional, ∂x1 . . . ∂xnΦ(f ) = 0 unless x1 = · · · = xn so the
chaos is supported on diagonal terms.

▶ If PR decays rapidly away from the diagonal, then we can analyse the
variance and limiting distribution on each chaos as in the local case. We
can view this as ‘semi-locality’ of the cluster count.

Zd

ΛR

{f ≥ ℓ}

x1

x2

Figure: For this configuration
dx1dx2NR(f ) = 1.

▶ In general, if dx1 . . . dxnNR(f ) ̸= 0 then x1, . . . , xn must be joined by
bounded clusters of {f ≥ ℓ}.
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Wiener chaos expansion
‘Semi-locality’ via percolation results

Theorem (Truncated arm decay [9])

Let f : Zd → R be the Gaussian free field for d ≥ 3. There exists ℓc ∈ R such
that for every ℓ ̸= ℓc , the probability that 0 is contained in a bounded cluster of
{f ≥ ℓ} of diameter at least n is at most e−cnρ for some c, ρ > 0.

Corollary

For ℓ ̸= ℓc there exists c,C , ρ > 0 such that

PR(x) ≤ Ce−cdiam(x)ρ

where diam(x) denotes the diameter of x.
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Wiener chaos expansion
Limit theorems for the cluster count

Let µ(ℓ) = limR→∞ E[NR(f )]/(2R)
d be the mean clusters-per-vertex.

Theorem
Let f : Z3 → R be the Gaussian free field and ℓ ̸= ℓc .

Var[NR(f )] ∼ cℓ ×


R5 if µ′(ℓ) ̸= 0

R4 if µ′(ℓ) = 0, µ′′(ℓ) ̸= 0

R3 logR if µ′(ℓ) = µ′′(ℓ) = 0, µ′′′(ℓ) ̸= 0

R3 otherwise.

In case 2, the (normalised) limiting distribution is a Hermite distribution, in all
other cases it is Gaussian.

▶ Analogous results hold for d ≥ 4 and other fields but are omitted here for
brevity.

▶ Similar to results in local case, but the requirement that ℓ ̸= ℓc is new.
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Summary

Open questions:

▶ Can this approach be extended to smooth fields?

▶ Does this approach enable the Malliavin-Stein method for non-local
functionals?

▶ What happens at the critical level?

Thank you for listening!
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