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Smooth Gaussian fields

▶ Let f : Rd → R be a stationary C 2 Gaussian field with mean zero and
variance one.

▶ The distribution of f is specified by its covariance function K : Rd → R
defined as

K(x − y) = Cov[f (x), f (y)] ∀x , y ∈ Rd .

▶ We will consider the geometry/topology of the excursion sets

{f ≥ ℓ} :=
{
x ∈ Rd

∣∣∣ f (x) ≥ ℓ
}

for ℓ ∈ R.

Figure: Excursion sets {f ≥ 0} in white for the fields on R2 with K(x) = J0(|x |),
the 0-th Bessel function, (left) and K(x) = exp(−|x |2/2) (right).
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Motivation
1) Studying classes of functions

A Gaussian field can be viewed as a measure on a particular class of functions.
Statements about the field can be interpreted as statements about ‘typical’
functions in the class.

1. Berry’s conjecture: on generic 2-dimensional manifolds, high-frequency
eigenfunctions of the Laplacian can be approximated by the Gaussian field
with K(x) = J0(|x |) [5].

2. Hilbert’s 16th problem concerns the zero set of homogeneous
polynomials. There is a canonical Gaussian measure on such polynomials
which behaves locally like the stationary field with K(x) = exp(−|x |2/2)
[8].
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Motivation
2) Percolation theory

▶ Percolation theory studies the large scale topological properties of spatial
random models.

▶ Phase transition: for a given field, there is a critical level ℓc such that,
with probability one

• for ℓ > ℓc , {f ≥ ℓ} contains only bounded components,
• for ℓ < ℓc , {f ≥ ℓ} contains a unique unbounded component.

See [1] for a survey.

Figure: The excursion sets {f ≥ ℓ} for ℓ = 0.05 (left), ℓ = 0 (middle) and ℓ = −0.05
(right). Largest component highlighted in green.
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Questions of interest

▶ What are the geometric and topological properties of smooth Gaussian
excursion sets?

▶ Focus on ‘approximately additive’ functionals:

Geometric functionals
• Volume

• Boundary volume

Topological functionals

• Number of connected
components

• Betti numbers

• Euler characteristic

▶ What is the expectation, variance and distribution of such functionals on a
bounded domain?

▶ How does this depend on the size of the domain? the level of the
excursion set? the covariance of the field?
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Local vs non-local functionals
Definition

▶ A functional of a random field is described as local if it is an integral of a
pointwise function of the field and its derivatives:∫

D

φ(f (x),∇f (x),∇2f (x)) µ(dx)

▶ Examples

Local functionals
• Volume

∫
D 1f (x)≥ℓ dx

• Boundary volume
∫
D 1f (x)=ℓHd−1(dx)

• Euler characteristic

Non-local functionals
• Number of connected

components

• Betti numbers

• Volume of the
unbounded component
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Local vs non-local functionals
What is known?

Local functionals

▶ Powerful methods available including the Kac-Rice formula and the
Wiener chaos expansion,

▶ Can typically characterise the mean, variance and asymptotic distribution,

▶ Results known for a wide variety of covariance structures.

Non-local functionals

▶ No unifying theory, but many partial results using a variety of methods:

Type of result Methods
Law of large numbers [11] Ergodic argument
Variance bounds[12, 4, 3] Coupling, interpolation formulae
Central limit theorem [2, 9, 7] Martingale techniques

▶ Most results are sub-optimal or hold only for a restricted class of
covariance functions.
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A classical problem

▶ Consider a functional of the form

FR =

∫
[−R,R]d

φ(f (x)− ℓ) dx

for some φ : R → R.
▶ For simplicity, assume that

K(x) ∼ c|x |−α as |x | → ∞

for some α ∈ (0, d).

Question: Can we describe the asymptotic statistics (mean, variance,
distribution) of FR as R → ∞?

▶ By Fubini’s theorem,
E[FR ] = (2R)dµ(ℓ)

where µ(ℓ) := E[φ(f (0)− ℓ)].
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Wiener chaos expansion

Let G be a set of centred jointly Gaussian variables. Let Pn be the space of all
polynomials of degree ≤ n in G.
The n-th Wiener chaos of G is G:n: := Pn ∩ Pn−1

⊥
.

Theorem
Let the random variable F be square integrable and σ(G)-measurable, then

F
L2

=
∞∑
n=0

Qn[F ]

where Qn denotes projection onto G:n:.
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Hermite polynomials

▶ The Hermite polynomials (Hn)n≥0 can be defined inductively by setting

H0(x) = 1 and Hn+1(x) = xHn(x)− H ′
n(x).

▶ Properties:
1. If X ,Y are jointly normal with mean zero and variance one then

E[Hn(X )Hm(Y )] =

{
n!Cov[X ,Y ]n if n = m

0 if n ̸= m.

Hence if X ∈ G then Hn(X ) ∈ G:n:.
2. If E[φ2(Z)] < ∞ for Z ∼ N (0, 1) then

φ =
∞∑
n=0

anHn

where
∑

n a
2
nn! < ∞.
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Chaos expansion for a local functional
Variance asymptotics

▶ Considering the expansion φ(· − ℓ) =
∑

n an(ℓ)Hn yields

FR =
∞∑
n=0

an(ℓ)

∫
[−R,R]d

Hn(f (x)) dx =
∞∑
n=0

Qn[FR ].

▶ The variance of FR can be computed by considering

Var[Qn[FR ]] = an(ℓ)
2

∫∫
[−R,R]2d

Cov[Hn(f (x)),Hn(f (y))] dxdy

= an(ℓ)
2n!

∫∫
[−R,R]2d

K(x − y)n dxdy

for n ≥ 1.

▶ Since K(x) ∼ c|x |−α, for n ≥ 1

Var[Qn[FR ]] ∼ an(ℓ)
2cK ,n ×


R2d−nα if nα < d ,

Rd logR if nα = d ,

Rd if nα > d .
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Chaos expansion for a local functional
Convergence in distribution

▶ Since H1(x) = x

Q1[FR ] = a1(ℓ)

∫
[−R,R]d

f (x) dx

which is Gaussian.

▶ For nα ≥ d , one can show that

Qn[FR ]√
Var[Qn[FR ]]

d−→ N (0, 1)

using the fourth-moment theorem (or method of moments) and a
diagram formula for the moments of Hermite polynomials.

▶ For 1 < n < d/α by expressing Hermite polynomials as multiple
Wiener-Itô integrals one can show

Qn[FR ]√
Var[Qn[FR ]]

d−→ cK ,n

∫
F [1[−1,1]d ](

∑n
i=1 ui )

n∏
i=1

W (dui )

|ui |(d−α)/2

where the latter follows a Hermite distribution.
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Conclusion: Limit theorems for a local functional

Theorem (Breuer-Major/Dobrushin-Major theorem)

Let n∗(ℓ) = inf{n : an(ℓ) ̸= 0}. If f satisfies some technical conditions, then

Var[FR ] ∼ cK ,φ,ℓ ×


R2d−n∗α if n∗α < d ,

Rd logR if n∗α = d ,

Rd if n∗α > d ,

as R → ∞.

Moreover if n∗ = 1 or n∗α ≥ d then

FR − µ(ℓ)√
Var[FR ]

d→ N (0, 1).

For other values of n∗, the limiting distribution is a Hermite distribution.

Remark

▶ Typically n∗(ℓ) = 1 for all but finitely many values of ℓ, which are
described as anomalous levels.

▶ If φ is regular then an(ℓ) = (−1)nµ(n)(ℓ)/n! so that anomalous levels
correspond to critical points of µ.
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Wiener chaos method for non-local functionals
Setting

In joint work with Stephen Muirhead [10], we adapt the Wiener chaos method
to prove limit theorems for a non-local functional.

▶ Let f : Zd → R be the Gaussian free field (in d ≥ 3), so that

K(x − y) ∼ cd |x − y |−(d−2).

▶ The cluster count NR(f ) is the number of clusters (i.e. connected
components) of the graph {f ≥ ℓ} ∩ [−R,R]d .
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Part 1: Identifying chaos projections
Smooth functionals

Proposition

Let D ⊂ Zd be finite and Φ ∈ C∞(RD), then

Qn[Φ(f )] =
1

n!

∑
x1,...,xn∈D

E[∂x1 . . . ∂xnΦ(f )] :f (x1) . . . f (xn):

where the Wick polynomial :f (x1) . . . f (xn): is defined as Qn[f (x1) . . . f (xn)].

▶ Proof 1: Elementary argument using Gaussian integration by parts.

▶ Proof 2: Stroock formula:

Qn[Φ(f )] = In

(
1

n!
E[DnΦ(f )]

)
=

1

n!

∑
x1,...,xn∈D

E[∂x1 . . . ∂xnΦ(f )]In(e1 ⊗ · · · ⊗ en).
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Part 1: Identifying chaos projections
Cluster count

The discrete derivative dx is defined as

dxNR(f ) = NR({f ≥ ℓ} ∪ {x}})− NR({f ≥ ℓ} \ {x}).

Let ΛR = [−R,R]d ∩ Zd .

Proposition

For R ≥ 1

Qn[NR(f )] =
1

n!

∑
x1,...,xn∈ΛR

PR(x1, . . . , xn) :f (x1) . . . f (xn):

where the pivotal intensity PR is defined for distinct points x = (x1, . . . , xn) as

PR(x) = E[dx1 . . . dxnNR(f )|f (x) = ℓ]φf (x)(ℓ),

and φf (x) is the density of f (x).
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Part 1: Identifying chaos projections
Part 2: Semi-locality of pivotal intensities

▶ Comparing with a local functional:

Local: Qn[FR ] = an(ℓ)
∑
x∈ΛR

:f (x)n:

Non-local: Qn[NR(f )] =
1

n!

∑
x1,...,xn∈ΛR

PR(x1, . . . , xn) :f (x1) . . . f (xn):

since :f (x)n: = Hn(f (x)).

▶ Hence the local case corresponds to PR(x1, . . . , xn) = n!an(ℓ)1x1=···=xn .

▶ One could imagine extending the analysis from the local case if PR is
approximately stationary and has rapid off-diagonal decay.

▶ We refer to this as semi-locality.
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Part 1: Identifying chaos projections
Part 2: Semi-locality of pivotal intensities

▶ Recall that for distinct points x = (x1, . . . , xn)

PR(x) = E[dx1 . . . dxnNR(f )|f (x) = ℓ]φf (x)(ℓ).

Zd

ΛR

{f ≥ ℓ}

x1

x2

x3

Figure: For this configuration
dx1dx2NR(f ) = 1 but
dx1dx3NR(f ) = 0.

▶ In general, if dx1 . . . dxnNR(f ) ̸= 0 then x1, . . . , xn must be joined by
bounded clusters of {f ≥ ℓ}.
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Part 1: Identifying chaos projections
Part 2: Semi-locality of pivotal intensities

Theorem (Truncated arm decay [6])

Let f : Zd → R be the Gaussian free field for d ≥ 3. There exists ℓc ∈ R such
that for every ℓ ̸= ℓc , the probability that 0 is contained in a bounded cluster of
{f ≥ ℓ} of diameter at least n is at most e−cnρ for some c, ρ > 0.

Corollary

For ℓ ̸= ℓc there exists c,C , ρ > 0 such that

PR(x) ≤ Ce−cdiam(x)ρ

where diam(x) denotes the diameter of x.
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Part 1: Identifying chaos projections
Part 2: Semi-locality of pivotal intensities
Part 3: Convergence of semi-local chaoses

▶ Arguments for local functionals (based on the fourth-moment
theorem/multiple Wiener-Itô integrals) can be extended to the semi-local
case.

▶ Calculations involving covariance kernels become more involved but are
conceptually straightforward:

Local: Var[Qn[FR ]] = an(ℓ)
2

∑
x,y∈ΛR

K(x − y)n

Non-local: Var[Qn[NR(f )]] =
1

n!

∑
x,y∈Λn

R

PR(x)PR(y)
n∏

i=1

K(xi − yi ).

▶ To control the tail of the chaos expansion we use an interpolation formula
for Var[

∑
n≥N Qn[NR(f )]] in terms of discrete derivatives of order N.
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Conclusion: Limit theorems for the cluster count

We define the mean clusters-per-vertex as

µ(ℓ) := lim
R→∞

E[NR(f )]

(2R)d
.

Theorem
Let f : Z3 → R be the Gaussian free field and ℓ ̸= ℓc .

Var[NR(f )] ∼ cℓ ×


R5 if µ′(ℓ) ̸= 0

R4 if µ′(ℓ) = 0, µ′′(ℓ) ̸= 0

R3 logR if µ′(ℓ) = µ′′(ℓ) = 0, µ′′′(ℓ) ̸= 0

R3 otherwise.

In the second case, the (normalised) limiting distribution is a Hermite
distribution, in all other cases it is Gaussian.

▶ Analogous results hold for d ≥ 4 and other fields but are omitted here for
brevity.

▶ Similar to results in local case, but the requirement that ℓ ̸= ℓc is new.
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Summary

Open questions:

▶ Can this approach be extended to smooth fields?

▶ Does this approach enable the Malliavin-Stein method for non-local
functionals?

▶ What happens at the critical level?

Thank you for listening!
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