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1. Introduction
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Smooth Gaussian fields

> Let f: RY — R be a stationary C? Gaussian field with mean zero and

variance one.
> The distribution of f is specified by its covariance function K : RY — R

defined as
K(x — y) = Cov[f(x), f(y)] Vx,y € R%.

> We will consider the geometry/topology of the excursion sets

{fzé}::{xeRd’f(x)ZZ} for £ € R.

N/

Figure: Excursion sets {f > 0} in white for the fields on R? with K(x) = Jo(|x|),
the 0-th Bessel function, (left) and K(x) = exp(—|x|?/2) (right).
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Motivation

1) Studying classes of functions

A Gaussian field can be viewed as a measure on a particular class of functions.
Statements about the field can be interpreted as statements about ‘typical’
functions in the class.

1. Berry’s conjecture: on generic 2-dimensional manifolds, high-frequency
eigenfunctions of the Laplacian can be approximated by the Gaussian field
with K(x) = Jo(|x]) [5].

2. Hilbert’s 16th problem concerns the zero set of homogeneous
polynomials. There is a canonical Gaussian measure on such polynomials
which behaves locally like the stationary field with K(x) = exp(—|x|*/2)

(8]
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Motivation
2) Percolation theory

» Percolation theory studies the large scale topological properties of spatial
random models.

» Phase transition: for a given field, there is a critical level ¢ such that,
with probability one

® for £ > {c, {f > ¢} contains only bounded components,
® for ¢ < {c, {f > £} contains a unique unbounded component.

See [1] for a survey.

Figure: The excursion sets {f > ¢} for £ = 0.05 (left), £ = 0 (middle) and £ = —0.05
(right). Largest component highlighted in green.
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Questions of interest

» What are the geometric and topological properties of smooth Gaussian
excursion sets?

» Focus on ‘approximately additive’ functionals:

Geometric functionals Topological functionals

® Volume ® Number of connected
components

® Boundary volume
® Betti numbers

® FEuler characteristic
» What is the expectation, variance and distribution of such functionals on a
bounded domain?

» How does this depend on the size of the domain? the level of the
excursion set? the covariance of the field?




Local vs non-local functionals
Definition

» A functional of a random field is described as local if it is an integral of a
pointwise function of the field and its derivatives:

/D H(F(x), VF(x), V2 (x)) u(dx)

» Examples

Local functionals Non-local functionals

® Volume fD Le>e dx ® Number of connected
components

® Boundary volume [p, T¢(y—H9 ™! (dx)

® Euler characteristic

® Betti numbers

® Volume of the
unbounded component
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Local vs non-local functionals
What is known?

Local functionals

» Powerful methods available including the Kac-Rice formula and the
Wiener chaos expansion,

» Can typically characterise the mean, variance and asymptotic distribution,

» Results known for a wide variety of covariance structures.

Non-local functionals

» No unifying theory, but many partial results using a variety of methods:
Type of result ‘ Methods
Law of large numbers [11] Ergodic argument
Variance bounds[12, 4, 3] Coupling, interpolation formulae
Central limit theorem [2, 9, 7] | Martingale techniques

» Most results are sub-optimal or hold only for a restricted class of
covariance functions.
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2. Wiener chaos method for local functionals




A classical problem

» Consider a functional of the form
Fr = / w(f(x) —£) dx
[=R.R]4
for some p : R — R.
» For simplicity, assume that
K(x) ~ c|x|™ as |x| = o0
for some a € (0, d).

Question: Can we describe the asymptotic statistics (mean, variance,
distribution) of Fgr as R — co?

» By Fubini's theorem,
E[Fr] = (2R)?u(¢)

where p(¢) := E[p(f(0) — £)].




Wiener chaos expansion

Let G be a set of centred jointly Gaussian variables. Let P, be the space of all
polynomials of degree < n in G.
The n-th Wiener chaos of G is G™ := P, N Py .

Theorem
Let the random variable F be square integrable and o(G)-measurable, then

FES QilF]
n=0

where Q, denotes projection onto G™.
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Hermite polynomials

» The Hermite polynomials (Hs),>0 can be defined inductively by setting
Ho(x) =1 and Hpp1(x) = xHa(x) — Hy(x).

» Properties:
1. If X, Y are jointly normal with mean zero and variance one then

E[Hn(X)Hm(Y)] = {g!COV[X, Y] :: : ; :

Hence if X € G then H,(X) € G™.
2. If E[¢?(Z)] < oo for Z ~ N(0,1) then

oo
= Z anH,
n=0

where 3" a2n! < oco.
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Chaos expansion for a local functional

Variance asymptotics

» Considering the expansion (- — €) = " an(¢)H, yields

FR = Z a,,(Z)

» The variance of Fr can be computed by considering

Ha(f(x)) dx = > Qu[Fr].

[—R.R]?

Var[Qu[Fr]] = an(£)? / /H » Cov[Hn(F(x)), Ha(F(y))] dxdy

= a,(£)*n! // K(x — y)" dxdy
[*R,R]Zd

for n>1.
> Since K(x) ~ c|x|™%, forn >1

R?¥=" if na < d,
Var[Qu[Fr]] ~ an(¢)’ck.n % { R7log R if na = d, —
R if na > d. DuBLIN



Chaos expansion for a local functional

Convergence in distribution

> Since Hi(x) = x
Qi[Fr] = a1(0) f(x) dx

[-R,R}
which is Gaussian.

» For na > d, one can show that

Qn[FR]

— U RL 9 A(0,1)
Var[Qn[Fr]]

using the fourth-moment theorem (or method of moments) and a
diagram formula for the moments of Hermite polynomials.

» For 1 < n < d/a by expressing Hermite polynomials as multiple
Wiener-1t6 integrals one can show

n

Qn[Fr] 4 W(du,
/Var[Q.[Fa]] /f[ﬂ[ Ll ')H || (=)

where the latter follows a Hermite distribution.
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Conclusion: Limit theorems for a local functional

Theorem (Breuer-Major/Dobrushin-Major theorem)
Let n*(£) = inf{n: a,(€) # O}. If f satisfies some technical conditions, then

R=m"e if p*a < d,
Var[Fgr] ~ ¢k, o0 X { R%log R if n*a = d, as R — oo.
R if n"*a > d,
Moreover if n* =1 or n*a > d then
Fr —p(f)

v/ Var[Fg]

For other values of n*, the limiting distribution is a Hermite distribution.

2 N(0,1).

Remark

» Typically n*(£) = 1 for all but finitely many values of £, which are
described as anomalous levels.

> If @ is regular then a,(£) = (—1)"u™(£)/n! so that anomalous levels
correspond to critical points of .
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3. Wiener chaos method for non-local functionals




Wiener chaos method for non-local functionals
Setting

In joint work with Stephen Muirhead [10], we adapt the Wiener chaos method
to prove limit theorems for a non-local functional.

> Let f : Z¢ — R be the Gaussian free field (in d > 3), so that

K(x—y) ~ calx —y| 72,

» The cluster count Ng(f) is the number of clusters (i.e. connected
components) of the graph {f > ¢} N[-R, R]".
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Part 1: Identifying chaos projections

Smooth functionals

Proposition
Let D C 77 be finite and ® € C*=(RP), then
1
Qo] = — > E[dy ... 0,S(A] (1) .. fxa):
D XLy xp€D

where the Wick polynomial :f(x1)...f(x,): is defined as Q,[f(x1)...f(xn)].

» Proof 1: Elementary argument using Gaussian integration by parts.
» Proof 2: Stroock formula:

I (%E[D’%b(f)])

nl S Bl 0, 0()]h(e @ @ ey),

Qu[®(F)]



Part 1: Identifying chaos projections

Cluster count

The discrete derivative d, is defined as

dNr(f) = Nr({f = €} U {x}}) = Nr({f = £} \ {x}).
Let Ar = [-R,R]“NZ°.
Proposition

ForR>1

Qn[Nr(F)] = % Z Pr(x1, ..., %) :f(x1) ... f(xn):

X1, XnE€EAR
where the pivotal intensity Pr is defined for distinct points x = (x1,...,Xn) as
Pr(x) = Eldx, .. . dy, Nr(F)|f(x) = £lpr( (£);

and ¢y is the density of f(x).




Part 1: Identifying chaos projections
Part 2: Semi-locality of pivotal intensities

» Comparing with a local functional:

Local: Qn[Fr] = an(?) Z F(x)"
xEAR
Non-local:  Qu[N(f)] = % ST Prxty o x) () . F(x0):
D Xlyees xnEAR

since :f(x)": = H,(f(x)).
» Hence the local case corresponds to Pr(xi,...,%n) = nlan(€)L=...=x,

» One could imagine extending the analysis from the local case if Pg is
approximately stationary and has rapid off-diagonal decay.

» We refer to this as semi-locality.




Part 1: Identifying chaos projections
Part 2: Semi-locality of pivotal intensities

» Recall that for distinct points x = (x1,...,Xn)

Pr(x) = E[dy - . . do, Nr(F)|f(x) = fpr(x(€)-

1 |

| |

} ——o—e d

1 X3 : Z

| 1

|

| X1 :\ Ar Figure: For this configuration
} ; dx, d, NR(£) = 1 but
: i dx, dx, Ng(f) =0.

‘ o {f>0

| |

l l

| |

» In general, if dy, ...dx, Nr(f) # 0 then xi, ..., x, must be joined by
bounded clusters of {f > ¢}.
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Part 1: ldentifying chaos projections
Part 2: Semi-locality of pivotal intensities

Theorem (Truncated arm decay [6])

Let f : Z% — R be the Gaussian free field for d > 3. There exists £ € R such
that for every £ # L., the probability that 0 is contained in a bounded cluster of
{f > £} of diameter at least n is at most e~"" for some ¢, p > 0.

Corollary
For £ # £, there exists c, C, p > 0 such that

Pr(x) < Ce™ctiam®”

where diam(x) denotes the diameter of x.
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Part 1: Identifying chaos projections
Part 2: Semi-locality of pivotal intensities
Part 3: Convergence of semi-local chaoses

» Arguments for local functionals (based on the fourth-moment

theorem/multiple Wiener-1t6 integrals) can be extended to the semi-local
case.

» Calculations involving covariance kernels become more involved but are
conceptually straightforward:

Local: Var[Qn[Fr]] = 3,,(6)2 Z K(x—y)"
x,yENR
Non-local:  Var[Q.[N&(f)]] = % > Pr(x)Pr(y H K(xi — yi).
" x,yENp,

» To control the tail of the chaos expansion we use an interpolation formula
for Var[y~ <y Qu[Nr(f)]] in terms of discrete derivatives of order N.




Conclusion: Limit theorems for the cluster count

We define the mean clusters-per-vertex as

E[Ng(f
MOES RILmOO %

Theorem
Let f : Z® — R be the Gaussian free field and £ # (..

RS if ' (€) #0

R* if W/ (€) =0, 1" (£) #0
Var[NR(f)] ~C X 3 I M/( ) //N‘ ( )7& "

Rilog R if p/'(¢) = p"(£) = 0, " (€) # 0

R3 otherwise.

In the second case, the (normalised) limiting distribution is a Hermite
distribution, in all other cases it is Gaussian.

» Analogous results hold for d > 4 and other fields but are omitted here for
brevity.
» Similar to results in local case, but the requirement that £ # /. is neW'DTm

UBLIN




Summary

Open questions:
» Can this approach be extended to smooth fields?

» Does this approach enable the Malliavin-Stein method for non-local
functionals?

» What happens at the critical level?

Thank you for listening!
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